Skip to main content
Log in

Performance of the IEF-MST solvation continuum model in the SAMPL2 blind test prediction of hydration and tautomerization free energies

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The IEF-MST continuum solvation model is used to predict the hydration free energies and tautomeric preferences of a set of multifunctional compounds compiled as a blind test for computational solvation methods in the SAMPL2 contest. Computations of hydration free energies was performed using both HF/6-31G(d) and B3LYP/6-31G(d) versions of the IEF-MST model. For tautomeric preferences, the IEF-MST data was combined with the gas phase free energy differences predicted at different levels of theory ranging from MP2/6-31+G(d) to MP2/CBS+[CCSD-MP2/6-31+G(d)] levels. Comparison with the experimental data provided for hydration free energies yields a root-mean square deviation (rmsd) close to 2.3 kcal/mol, which is quite remarkable, especially considering the reduced set of training compounds used in the parametrization of the IEF-MST method. With regard to tautomerism, the lowest error in the prediction of the relative stabilities between tautomers in solution is obtained by combining MP2/CBS+[CCSD-MP2/6-31+G(d)] results with IEF-MST hydration free energies, yielding a rmsd of ca. 3.4 kcal/mol. The results illustrate the delicate balance that must be kept between the intrinsic relative stabilities in the gas phase and the differential hydration preferences in order to obtain an accurate description of the prototropic tautomerism in bioorganic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ben-Naim A (1987) Solvation Thermodynamics. Plenum Press, New York

    Google Scholar 

  2. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161

    Article  CAS  Google Scholar 

  3. Orozco M, Luque FJ (2000) Chem Rev 100:4187

    Article  CAS  Google Scholar 

  4. Luque FJ, Curutchet C, Muñoz-Muriedas J, Bidon-Chanal A, Soteras I, Morreale A, Gelpí JL, Orozco M (2003) Phys Chem Chem Phys 18:3827

    Article  CAS  Google Scholar 

  5. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  6. Rinaldi D, Ruiz-López MF, Martins Costa MTC, Rivail JL (1986) Chem Phys Lett 128:177

    Article  CAS  Google Scholar 

  7. Olivares del Valle FJ, Aguilar MA (1993) J Mol Struct (THEOCHEM) 25(9): 99

    Google Scholar 

  8. Amovilli C, Mennucci B (1997) J Phys Chem B 101:1051

    Article  CAS  Google Scholar 

  9. Borström M, Ninham BW (2004) J Phys Chem B 108:12593

    Article  CAS  Google Scholar 

  10. Curutchet C, Orozco M, Luque FJ, Mennucci B, Tomasi J (2006) J Comput Chem 27:1769

    Article  CAS  Google Scholar 

  11. Curuchet C, Cramer CJ, Truhlar DG, Ruiz-López MF, Rinaldi D, Orozco M, Luque FJ (2003) J Comput Chem 24:284

    Article  CAS  Google Scholar 

  12. Klamt A, Mennucci B, Tomasi J, Barone V, Curutchet C, Orozco M, Luque FJ (2009) Acc Chem Res 42:489

    Article  CAS  Google Scholar 

  13. Guthrie JP (2009) J Phys Chem B 113:4501

    Article  CAS  Google Scholar 

  14. Curutchet C, Orozco M, Luque FJ (2001) J Comput Chem 22:1180

    Article  CAS  Google Scholar 

  15. Soteras I, Curutchet C, Bidon-Chanal A, Orozco M, Luque FJ (2005) THEOCHEM 727:29

    Article  CAS  Google Scholar 

  16. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  Google Scholar 

  17. Mennucci B, Cancès B, Tomasi J (1997) J Phys Chem B 101:10506

    Article  CAS  Google Scholar 

  18. Pierotti RA (1976) Chem Rev 76:717

    Article  CAS  Google Scholar 

  19. Claverie P, Daudey JP, Langlet J, Pullman B, Piazzola D, Huron MJ (1978) J Phys Chem 82:405

    Article  CAS  Google Scholar 

  20. Luque FJ, Bachs M, Orozco M (1994) J Comput Chem 15:111

    Article  Google Scholar 

  21. Bachs M, Luque FJ, Orozco M (1994) J Comput Chem 15:446

    Article  CAS  Google Scholar 

  22. Orozco M, Bachs M, Luque FJ (1995) J Comput Chem 16:563

    Article  CAS  Google Scholar 

  23. Luque FJ, Zhang Y, Alemán C, Bachs M, Gao J, Orozco M (1996) J Phys Chem 100:4269

    Article  CAS  Google Scholar 

  24. Luque FJ, Alemán C, Bachs M, Orozco M (1996) J Comput Chem 17:806

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa, J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill, P MW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03, Rev. B.04. Gaussian Inc., Pittsburgh

  26. Sun YP, Soon BH, Jae SL (2002) J Mol Struct (THEOCHEM) 586: 81

    Google Scholar 

  27. McQuerrie D (1973) Statistical Mechanics. Harper & Brown, New York

    Google Scholar 

  28. Luque FJ, López JM, López de la Paz M, Vicent C, Orozco M (1998) J Phys Chem A102:6690

    Google Scholar 

  29. Hernández B, Curutchet C, Colominas C, Orozco M, Luque FJ (2002) Mol Simul 28:153

    Article  Google Scholar 

  30. Butler K, Luque FJ, Barril X (2009) J Comput Chem 30:601

    Article  CAS  Google Scholar 

  31. Soteras I, Forti F, Orozco M, Luque FJ (2009) J Phys Chem B 113:9330

    Article  CAS  Google Scholar 

  32. Klamt A, Jonas V, Burger T, Lohrenz JCW (1998) J Phys Chem 102:5074

    CAS  Google Scholar 

  33. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  34. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  35. Schaefer A, Huber C, Ahlrichs I (1994) J Chem Phys 100:5829

    Article  CAS  Google Scholar 

  36. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119

    CAS  Google Scholar 

  37. Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2009) J Chem Theory Comput. 3: 2011

  38. Marenich AV, Cramer CJ, Truhlar DG (2009) J Chem Theory Comput (to be submitted)

  39. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  41. Weigend F, Furche F, Ahlrichs R (2003) J Chem Phys 119:12753

    Article  CAS  Google Scholar 

  42. Hättig C (2005) Phys Chem Chem Phys 7:59

    Article  CAS  Google Scholar 

  43. Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107:1384

    Article  CAS  Google Scholar 

  44. Farrera JA, Canal I, Hidalgo-Fernandez P, Perez-Garcia ML, Huertas O, Luque FJ (2008) Chem Eur J 14:2277

    Article  CAS  Google Scholar 

  45. Blas JR, Luque FJ, Orozco M (2004) J Am Chem Soc 126:154

    Article  CAS  Google Scholar 

  46. Huertas O, Blas JR, Soteras I, Orozco M, Luque FJ (2006) J Phys Chem A 110:510

    Article  CAS  Google Scholar 

  47. Martin YC (2009) J Comput Aided Mol Design 23:693

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Ministerio de Innovación y Ciencia (MICINN; SAF2008-05595) and Generalitat de Catalunya (2009-SGR00298), and the computational facilities provided by the Centre de Supercomputació de Cataluyna (CESCA) and the Barcelona Supercomputing Center (BSC) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Luque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soteras, I., Orozco, M. & Luque, F.J. Performance of the IEF-MST solvation continuum model in the SAMPL2 blind test prediction of hydration and tautomerization free energies. J Comput Aided Mol Des 24, 281–291 (2010). https://doi.org/10.1007/s10822-010-9331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9331-y

Keywords

Navigation