Skip to main content
Log in

Computational studies on the interaction of ABO-active saccharides with the norovirus VA387 capsid protein can explain experimental binding data

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Norovirus strains are known to cause recurring epidemics of winter vomiting disease. The crystal structure of the capsid protein of VA387, a representative of the clinically important GII.4 genocluster, was recently solved in complex with histo-blood group A- and B-trisaccharides. However, the VA387 strain is known to bind also to other natural carbohydrates for which detailed structural information of the complexes is not available. In this study we have computationally explored the fit of the VA387 with a set of naturally occurring carbohydrate ligands containing a terminal α1,2-linked fucose. MD simulations both with explicit and implicit solvent models indicate that type 1 and 3 extensions of the ABO-determinant including ALeb and BLeb pentasaccharides can be well accommodated in the site. Scoring with Glide XP indicates that the downstream extensions of the ABO-determinants give an increase in binding strength, although the α1,2-linked fucose is the single strongest interacting residue. An error was discovered in the geometry of the GalNAc-Gal moiety of the published crystal structure of the A-trisaccharide/VA387 complex. The present modeling of the complexes with histo-blood group A-active structures shows some contacts which provide insight into mutational data, explaining the involvement of I389 and Q331. Our results can be applicable in structure-based design of adhesion inhibitors of noroviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atmar RL, Estes MK (2006) Gastroenterol Clin North Am 35(2):275

    Article  Google Scholar 

  2. Hutson AM, Airaud F, LePendu J, Estes MK, Atmar RL (2005) J Med Virol 77(1):116

    Article  CAS  Google Scholar 

  3. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R (2003) Nat Med 9(5):548

    Article  CAS  Google Scholar 

  4. Kindberg E, Akerlind B, Johnsen C, Knudsen JD, Heltberg O, Larson G, Bottiger B, Svensson L (2007) J Clin Microbiol 45(8):2720

    Article  CAS  Google Scholar 

  5. Tan M, Jin M, Xie H, Duan Z, Jiang X, Fang Z (2008) J Med Virol 80(7):1296

    Article  Google Scholar 

  6. Thorven M, Grahn A, Hedlund KO, Johansson H, Wahlfrid C, Larson G, Svensson L (2005) J Virol 79(24):15351

    Article  CAS  Google Scholar 

  7. Larsson MM, Rydell GE, Grahn A, Rodriguez-Diaz J, Akerlind B, Hutson AM, Estes MK, Larson G, Svensson L (2006) J Infect Dis 194(10):1422

    Article  CAS  Google Scholar 

  8. Huang P, Farkas T, Zhong W, Tan M, Thornton S, Morrow AL, Jiang X (2005) J Virol 79(11):6714

    Article  CAS  Google Scholar 

  9. Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, Huang P, Jiang X, Le Pendu J (2002) Gastroenterology 122(7):1967

    Article  CAS  Google Scholar 

  10. Harrington PR, Vinje J, Moe CL, Baric RS (2004) J Virol 78(6):3035

    Article  CAS  Google Scholar 

  11. Harrington PR, Lindesmith L, Yount B, Moe CL, Baric RS (2002) J Virol 76(23):12335

    Article  CAS  Google Scholar 

  12. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB (1995) J Biol Chem 270(9):4640

    Article  CAS  Google Scholar 

  13. Choi JM, Hutson AM, Estes MK, Prasad BV (2008) Proc Natl Acad Sci U S A 105(27):9175

    Article  CAS  Google Scholar 

  14. Bu W, Mamedova A, Tan M, Xia M, Jiang X, Hegde RS (2008) J Virol 82(11):5340

    Article  CAS  Google Scholar 

  15. Cao S, Lou Z, Tan M, Chen Y, Liu Y, Zhang Z, Zhang XC, Jiang X, Li X, Rao Z (2007) J Virol 81(11):5949

    Article  CAS  Google Scholar 

  16. Tan M, Xia M, Cao S, Huang P, Farkas T, Meller J, Hegde RS, Li X, Rao Z, Jiang X (2008) Virology 379(2):324

    Article  CAS  Google Scholar 

  17. Rydell GE, Nilsson J, Rodriguez-Diaz J, Ruvoen-Clouet N, Svensson L, Le Pendu J, Larson G (2009) Glycobiology 19(3):309

    Article  CAS  Google Scholar 

  18. Lindesmith LC, Donaldson EF, Lobue AD, Cannon JL, Zheng DP, Vinje J, Baric RS (2008) PLoS Med 5(2):e31

    Article  Google Scholar 

  19. Shirato H, Ogawa S, Ito H, Sato T, Kameyama A, Narimatsu H, Xiaofan Z, Miyamura T, Wakita T, Ishii K, Takeda N (2008) J Virol 82(21):10756

    Article  CAS  Google Scholar 

  20. Siebenga JJ, Vennema H, Zheng DP, Vinje J, Lee BE, Pang XL, Ho EC, Lim W, Choudekar A, Broor S, Halperin T, Rasool NB, Hewitt J, Greening GE, Jin M, Duan ZJ, Lucero Y, O’Ryan M, Hoehne M, Schreier E, Ratcliff RM, White PA, Iritani N, Reuter G, Koopmans M (2009) J Infect Dis 200(5):802

    Article  Google Scholar 

  21. Bohne A, Lang E, von der Lieth CW (1999) Bioinformatics 15(9):767

    Article  CAS  Google Scholar 

  22. Lii J-H, Chen K-H, Allinger NL (2003) J Comput Chem 24(12):1504

    Article  CAS  Google Scholar 

  23. Nahmany A, Strino F, Rosen J, Kemp GJL, Nyholm P-G (2005) Carbohydr Res 340(5):1059

    Article  CAS  Google Scholar 

  24. Strino F, Lii J-H, Gabius H-J, Nyholm P-G (2009) J Comput Aided Mol Des 23(12):845

    Article  CAS  Google Scholar 

  25. Agostino M, Jene C, Boyle T, Ramsland PA, Yuriev E (2009) J Chem Inf Model 49(12):2749

    Article  CAS  Google Scholar 

  26. Nurisso A, Kozmon S, Imberty A (2008) Mol Simul 34(4):469

    Article  CAS  Google Scholar 

  27. Stortz CA, Johnson GP, French AD, Csonka GI (2009) Carbohydr Res 344(16):2217

    Article  CAS  Google Scholar 

  28. Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, Woods RJ (2008) J Comput Chem 29(4):622

    Article  CAS  Google Scholar 

  29. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins 65(3):712

    Article  CAS  Google Scholar 

  30. Onufriev A, Bashford D, Case DA (2004) Proteins 55(2):383

    Article  CAS  Google Scholar 

  31. Carlsson B, Kindberg E, Buesa J, Rydell GE, Lidon MF, Montava R, Abu Mallouh R, Grahn A, Rodriguez-Diaz J, Bellido J, Arnedo A, Larson G, Svensson L (2009) PLoS One 4(5):e5593

    Article  Google Scholar 

Download references

Acknowledgments

Grants from the Swedish research council (8266) and from governmental funds to the Sahlgrenska University Hospital and financial support from Biognos AB, Göteborg, are gratefully acknowledged. We are grateful for valuable discussions with Drs. I. Pascher, S. Sundell and G. Kemp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Georg Nyholm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The coordinates of the modeled complexes after MD and minimzation are available as PDB files in the supplementary material of the journal. The 2D pictures of the ligands, adiabatic maps and the RMSDs of the simulated A- and B- trisaccharide complexes are also deposited as supplementary material. The MD trajectories can be obtained from the authors.

Supplementary material 1 (DOC 4445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koppisetty, C.A.K., Nasir, W., Strino, F. et al. Computational studies on the interaction of ABO-active saccharides with the norovirus VA387 capsid protein can explain experimental binding data. J Comput Aided Mol Des 24, 423–431 (2010). https://doi.org/10.1007/s10822-010-9353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9353-5

Keywords

Navigation