Skip to main content
Log in

Mechanisms of amphipathic helical peptide denaturation by guanidinium chloride and urea: a molecular dynamics simulation study

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Urea and GdmCl are widely used to denature proteins at high concentrations. Here, we used MD simulations to study the denaturation mechanisms of helical peptide in different concentrations of GdmCl and urea. It was found that the helical structure of the peptide in water simulation is disappeared after 5 ns while the helicity of the peptide is disappeared after 70 ns in 2 M urea and 25 ns in 1 M GdmCl. Surprisingly, this result shows that the helical structure in low concentration of denaturants is remained more with respect to that solvated in water. The present work strongly suggests that urea interact more preferentially to non-polar and aromatic side chains in 2 M urea; therefore, hydrophobic residues are in more favorable environment in 2 M urea. Our results also reveal that the hydrogen bonds between urea and the backbone is the dominant mechanism by which the peptide is destabilized in high concentration of urea. In 1 M and 2 M GdmCl, GdmCl molecules tend to engage in transient stacking interactions with aromatics and hydrophobic planar side chains that lead to displacement of water from the hydration surface, providing more favorable environment for them. This shows that accumulation of GdmCl around hydrophobic surfaces in 1 M and 2 M GdmCl solutions prevents proper solvation of the peptide at the beginning. In high GdmCl concentrations, water solvate the peptide better than 1 M and 2 M GdmCl. Therefore, our results strongly suggest that hydrogen bonds between water and the peptide are important factors in the destabilization of peptide in GdmCl solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Das A, Mukhopadhyay C (2008) J Phys Chem B 112:7903–7908

    Article  CAS  Google Scholar 

  2. Dill KA (1990) Biochemistry 29:7133–7155

    Article  CAS  Google Scholar 

  3. Tanford C (1968) Adv Protein Chem 23:121–282

    Article  CAS  Google Scholar 

  4. Tanford C, Kawahara K, Lapanje S (1966) J Biol Chem 241:1921–1923

    CAS  Google Scholar 

  5. Greene RF, Pace CN (1974) J Biol Chem 249:5388–5393

    CAS  Google Scholar 

  6. Arakawa T, Timasheff SN (1984) Biochemistry 23:5924–5929

    Article  CAS  Google Scholar 

  7. Mehrnejad F, Naderi-Manesh H, Ranjbar B (2007) Proteins 67:931–940

    Article  CAS  Google Scholar 

  8. Mehrnejad F, Chaparzadeh N (2008) J Biomol Struct Dyn 26:255–262

    CAS  Google Scholar 

  9. Möglich A, Krieger F, Kiefhaber T (2005) J Mol Biol 345:153–162

    Article  Google Scholar 

  10. Shellman JA (1955) Comp Rev Trav Lab Carlsberg 29:223–229

    Google Scholar 

  11. Kresheck GC, Scheraga HA (1965) J Phys Chem 69:1704–1706

    Article  CAS  Google Scholar 

  12. Frank HS, Franks F (1968) J Chem Phys 48:4746–4757

    Article  CAS  Google Scholar 

  13. Wallqvist A, Covell DG, Thirumalai D (1998) J Am Chem Soc 120:427–428

    Article  CAS  Google Scholar 

  14. Tobi D, Elber R, Thirumalai D (2003) Biopolymers 68:359–369

    Article  CAS  Google Scholar 

  15. Bennion BJ, Daggett V (2003) Proc Natl Acad Sci USA 100:5142–5147

    Article  CAS  Google Scholar 

  16. Zou Q, Habermann-Rottinghaus SM, Murphy KP (1998) Proteins 31:107–115

    Article  CAS  Google Scholar 

  17. Camilloni C, Rocco AG, Eberini I, Gianazza E, Broglia RA, Tiana G (2008) Biophys J 94:4654–4661

    Article  CAS  Google Scholar 

  18. Stumpe MC, Grubmüller H (2008) PLoS Comput Biol 4:e1000221

    Article  Google Scholar 

  19. Hua L, Zhou R, Thirumalai D, Berne BJ (2008) Proc Natl Acad Sci USA 105:16928–16933

    Article  CAS  Google Scholar 

  20. Mason PE, Brady JW, Neilson GW, Dempsey CE (2007) Biophys J 93:L04–L06

    Article  CAS  Google Scholar 

  21. Gesell J, Zasloff M, Opella SJ (1997) J Biomol NMR 9:127–135

    Article  CAS  Google Scholar 

  22. Grant E, Beeler TJ, Taylor KM, Gable K, Roseman MA (1992) Biochemistry 31:9912–9918

    Article  CAS  Google Scholar 

  23. Sheynis T, Sykora J, Benda A, Kolusheva S, Hof M, Jelinek R (2003) Eur J Biochem 270:4478–4487

    Article  CAS  Google Scholar 

  24. Kandasamy SK, Larson RG (2004) Chem Phys Lipids 132:113–132

    Article  CAS  Google Scholar 

  25. Berendsen HJC, van der Spoel DJ, van Drunen R (1995) Comp Phys Comm 91:43–56

    Article  CAS  Google Scholar 

  26. Lindahl E, Hess B, van der Spoel D (2001) J Mol Mod 7:306–317

    CAS  Google Scholar 

  27. Van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Hochschulverlag AG an der ETH Zürich, Zürich

  28. Van der Spoel D, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Hess B, Feenstra KA, Lindahl E, van Drunen R, Berendsen HJC (2002) Department of Biophysical Chemistry. University of Groningen, Groningen

  29. Berendsen HJC, Grigera JR, Straatsma TP (1987) J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  30. Smith LJ, Berendsen HJC, van Gunsteren WF (2004) J Phys Chem B 108:1065–1071

    Article  CAS  Google Scholar 

  31. Fioroni M, Burger K, Mark AE, Roccatano D (2000) J Phys Chem B 104:12347–12354

    Article  CAS  Google Scholar 

  32. Darden T, York D, Pedersen LG (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  33. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  34. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  35. Stumpe MC, Grubmüller H (2007) J Am Chem Soc 129:16126–16131

    Article  CAS  Google Scholar 

  36. O’Brien EP, Dima RI, Brooks B, Thirumalai D (2007) J Am Chem Soc 129:7346–7353

    Article  Google Scholar 

  37. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  38. Robinson DR, Jencks WP (1965) J Am Chem Soc 87:2462–2469

    Article  CAS  Google Scholar 

  39. Roccatano D, Colombo G, Fioroni M, Mark AE (2002) Proc Natl Acad Sci USA 99:12179–12184

    Article  CAS  Google Scholar 

  40. Kumar S, Modig K, Halle B (2003) Biochemistry 42:13708–13716

    Article  CAS  Google Scholar 

  41. Gerig JT (2004) Biophys J 86:3166–3175

    Article  CAS  Google Scholar 

  42. Roccatano D, Fioroni M, Zacharias M, Colombo G (2005) Protein Sci 14:2582–2589

    Article  CAS  Google Scholar 

  43. Chatterjee C, Gerig JT (2006) Biochemistry 45:14665–14674

    Article  CAS  Google Scholar 

  44. Smith JS, Scholtz JM (1996) Biochemistry 35:7292–7297

    Article  CAS  Google Scholar 

  45. Scholtz JM, Barrick D, York EJ, Stewart JM, Baldwin RL (1995) Proc Natl Acad Sci USA 92:185–189

    Article  CAS  Google Scholar 

  46. Tanford C (1964) J Am Chem Soc 86:2050–2059

    Article  CAS  Google Scholar 

  47. Tsai J, Gerstein M, Levitt M (1996) J Chem Phys 104:9417–9430

    Article  CAS  Google Scholar 

  48. Tirado-Rives J, Orozco M, Jorgensen WL (1997) Biochemistry 36:7313–7329

    Article  CAS  Google Scholar 

  49. Courtenay ES, Capp MW, Saecker RM, Record MT (2000) Proteins 4:72–85

    Article  Google Scholar 

  50. Zou Q, Bennion BJ, Daggett V, Murphy KP (2002) J Am Chem Soc 124:1192–1202

    Article  CAS  Google Scholar 

  51. Soper AK, Castner EW, Luzar A (2003) Biophys Chem 105:649–666

    Article  CAS  Google Scholar 

  52. Modig K, Kurian E, Prendergast G, Halle B (2003) Protein Sci 12:2768–2781

    Article  CAS  Google Scholar 

  53. Timasheff SN, Xie G (2003) Biophys Chem 105:421–448

    Article  CAS  Google Scholar 

  54. Schellman JA (2003) Biophys J 85:108–125

    Article  CAS  Google Scholar 

  55. van der Vegt NF, Lee ME, Trzesniak D, van Gunsteren WF (2006) J Phys Chem B 110:2852–12855

    Google Scholar 

  56. Lim WK, Rösgen J, Englander SW (2009) Proc Natl Acad Sci USA 106:2595–2600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of the Azarbaijan University of Tarbiat Moallem is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Mehrnejad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrnejad, F., Khadem-Maaref, M., Ghahremanpour, M.M. et al. Mechanisms of amphipathic helical peptide denaturation by guanidinium chloride and urea: a molecular dynamics simulation study. J Comput Aided Mol Des 24, 829–841 (2010). https://doi.org/10.1007/s10822-010-9377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9377-x

Keywords

Navigation