Skip to main content
Log in

Defining scaffold geometries for interacting with proteins: geometrical classification of secondary structure linking regions

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Medicinal chemists synthesize arrays of molecules by attaching functional groups to scaffolds. There is evidence suggesting that some scaffolds yield biologically active molecules more than others, these are termed privileged substructures. One role of the scaffold is to present its side-chains for molecular recognition, and biologically relevant scaffolds may present side-chains in biologically relevant geometries or shapes. Since drug discovery is primarily focused on the discovery of compounds that bind to proteinaceous targets, we have been deciphering the scaffold shapes that are used for binding proteins as they reflect biologically relevant shapes. To decipher the scaffold architecture that is important for binding protein surfaces, we have analyzed the scaffold architecture of protein loops, which are defined in this context as continuous four residue segments of a protein chain that are not part of an α-helix or β-strand secondary structure. Loops are an important molecular recognition motif of proteins. We have found that 39 clusters reflect the scaffold architecture of 89% of the 23,331 loops in the dataset, with average intra-cluster and inter-cluster RMSD of 0.47 and 1.91, respectively. These protein loop scaffolds all have distinct shapes. We have used these 39 clusters that reflect the scaffold architecture of protein loops as biological descriptors. This involved generation of a small dataset of scaffold-based peptidomimetics. We found that peptidomimetic scaffolds with reported biological activities matched loop scaffold geometries and those peptidomimetic scaffolds with no reported biologically activities did not. This preliminary evidence suggests that organic scaffolds with tight matches to the preferred loop scaffolds of proteins, implies the likelihood of the scaffold to be biologically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu J (2002) A new approach to finding natural chemical structure classes. J Med Chem 45:5311–5320

    Article  CAS  Google Scholar 

  2. Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893–930

    Article  CAS  Google Scholar 

  3. Bondensgaard K, Ankersen M, Thogersen H, Hansen BS, Wulff BS, Bywater R (2004) Recognition of privileged structures by g-protein coupled receptors. J Med Chem 47:888–899

    Article  CAS  Google Scholar 

  4. Muller G (2003) Medicinal chemistry of target family-directed masterkeys. Drug Discov Today 8:681–691

    Article  Google Scholar 

  5. Kuntz ID (1972) Protein folding. J Am Chem Soc 94:4009–4012

    Article  CAS  Google Scholar 

  6. Joseph D, Petsko GA, Karplus M (1990) Anatomy of a protein conformational change: hinged “lid” motion of the triosephosphate isomerase loop. Science 249:1425–1428

    Article  CAS  Google Scholar 

  7. Jones S, van Heyningen P, Berman HM, Thornton JM (1999) Protein-DNA interactions: a structural analysis. J Mol Biol 287:877–896

    Article  CAS  Google Scholar 

  8. Wu SJ, Dean DH (1996) Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA δ-endotoxin. J Mol Biol 255:628–640

    Article  CAS  Google Scholar 

  9. Wlodawer A, Miller M, Jakolski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM, Clawson L, Schneider J, Kent SBH (1989) Conserved folding in retrovial protease: crystal structure of a synthetic HIV-protease. Science 245:616–621

    Article  CAS  Google Scholar 

  10. Lu Y, Valentine JS (1997) Engineering metal-binding sites in proteins. Curr Opin Struct Biol 7:495–500

    Article  CAS  Google Scholar 

  11. Bajorath J, Sheriff S (2001) Comparison of an antibody model with an X-ray structure; the variable fragment of BR96. Proteins 24:152–157

    Article  Google Scholar 

  12. Kinoshita K, Sadanami K, Kidera A, Go N (1999) Structural motif of phosphate binding site common to various protein superfamilies: all-against-all structural comparison of protein-mononucleotide complexes. Protein Eng 12:11–14

    Article  CAS  Google Scholar 

  13. Perona JJ, Craik CS (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4:337–360

    Article  CAS  Google Scholar 

  14. Tyndall JDA, Pfeiffer B, Abbenante G, Fairlie DP (2005) Over one hundred peptide-activated g protein-coupled receptors recognize ligands with turn structure. Chem Rev 105:793–826

    Article  CAS  Google Scholar 

  15. Lewis PN, Momany FA, Scheraga HA (1973) Chain reversals in proteins. Biochim Biophys Acta 303:211–229

    CAS  Google Scholar 

  16. Hobohm U, Scharf M, Schneider R, Sander C (1992) Selection of a representative set of structures from the Brookhaven Protein Data Bank. Protein Sci 1:409–417

    Article  CAS  Google Scholar 

  17. Hobohm U, Sander C (1994) Enlarged representative set of protein structure. Protein Sci 3:522–524

    Article  CAS  Google Scholar 

  18. Berstein FC, Koetzle TF, Williams GJB, Edgar F, Meyer J, Brice MD, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  Google Scholar 

  19. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins Struct Funct Genet 23:566–579

    Article  CAS  Google Scholar 

  20. Ripka AS, Rich DH (1998) Peptideomimetic design. Curr Opin Chem Biol 2:441–452

    Article  CAS  Google Scholar 

  21. Damewood JR (1996) Peptide mimetic design with the aid of computational chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, 9th edn. VCH Publishers, New York, pp 1–79

    Google Scholar 

  22. Anderberg MR (1973) Cluster analysis for applications. Academic Press, New York and London

    Google Scholar 

  23. Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21:768

    Google Scholar 

  24. Sokal RR, Michener CD (1958) A statiscal method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438

    Google Scholar 

  25. SAS/STAT (1999) User’s guide, Volume 1, ANOVA-FREQ, Version 6. 4 edn

  26. Manly BFJ (1994) Multivariate statistical method, a primer, 2nd edn. Chapman & Hall, London

    Google Scholar 

  27. Belov VN, Funke C, Labahn T, Es-Sayed M, de Meijere A (1999) Cyclopropyl building blocks in organic synthesis, 50—an easy access to bicyclic peptides with an octahydro[2H]pyrazino[1, 2-a]pyrazine skeleton. Eur J Org Chem 6:1345–1356

    Article  Google Scholar 

  28. Golebiowski A, Klopfenstein SR, Chen JJ, Shao X (2000) Solid supported high-throughput organic synthesis of peptide b-turn mimetics via Petasis reaction/diketopiperazine formation. Tetrahedron Lett 41:4841–4844

    Article  CAS  Google Scholar 

  29. Golebiowski A, Jozwik J, Klopfenstein SR, Colson A-O, Grieb AL, Russell AF, Rastogi VL, Diven CF, Portlock DE, Chen JJ (2002) Solid-supported synthesis of putative peptide β-turn mimetics via Ugi reaction for diketopiperazine formation. J Comb Chem 4:584–590

    Article  CAS  Google Scholar 

  30. Souers AJ, Ellman JA (2001) β-Turn mimetic library synthesis: scaffolds and applications. Tetrahedron 57:7431–7448

    Article  CAS  Google Scholar 

  31. Kim H-O, Nakanishi H, Lee MS, Kahn M (2000) Design and synthesis of novel conformationally restricted peptide secondary structure mimetics. Org. Lett. 2:301–302

    Article  CAS  Google Scholar 

  32. Wels B, Kruijtzer JAW, Liskamp RMJ (2002) Synthesis of cyclic (α2β)-tripeptides as potential peptide turn mimetics. Org Lett 4:2173–2176

    Article  CAS  Google Scholar 

  33. Pinnen F, Zanotti G, Lucente G (1984) Ten-membered cyclotripeptides: influence of the ring-flexibility on intramolecular reactions. Tetrahedron Lett 25:5201–5204

    Article  CAS  Google Scholar 

  34. Eguchi M, Lee MS, Nakanishi H, Stasiak M, Lovell S, Kahn M (1999) Solid-phase synthesis and structural analysis of bicyclic β-turn mimetics incorporating functionality at the i to i +3 Positions. J Am Chem Soc 121:12204–12205

    Article  CAS  Google Scholar 

  35. Eguchi M, Lee MS, Stasiak M, Kahn M (2001) Solid-phase synthesis and solution structure of bicyclic β-turn peptidomimetics: diversity at the i position. Tetrahedron Lett 42:12347–1239

    Google Scholar 

  36. Golebiowski A, Klopfenstein SR, Shao X, Chen JJ, Colson A-O, Grieb AL, Russell AF (2000) Solid-supported synthesis of a peptide b-turn mimetic. Org Lett 2:2615–2617

    Article  CAS  Google Scholar 

  37. Ripka WCDL, GV, Bach II AC, Pottorf RS, Blaney JM (1993) Protein β-turn mimetics I. Design, synthesis, and evaluation in model cyclic peptides. Tetrahedron 49:3593–3608

  38. Chianelli D, Kim Y-C, Lvovskiy D, Webb TR (2003) Application of a novel design paradigm to generate general nonpeptide combinatorial scaffolds mimicking beta turns: synthesis of ligands for somatostatin receptors. Bioorg Med Chem Lett 11:5059–5068

    Article  CAS  Google Scholar 

  39. Im I, Webb TR, Gong Y-D, Kim J-I, Kim Y-C (2004) Solid-phase synthesis of tetrahydro-1, 4-benzodiazepine-2-one derivatives as a β-turn peptidomimetic library. J Comb Chem 6:207–213

    Article  CAS  Google Scholar 

  40. Min BJ, Gu XY, Lee YS, Petrov RR, Mayorov AV, Hruby VJ (2006) Design and synthesis of bicyclic internal beta-turn mimetics and their applications toward biologically interesting ligands. Biopolymers 80:506

    Google Scholar 

  41. Egner U, Muller-Fahrnow A, Eckle E (1999) Turn mimetics for peptide design. Sci Meet 51:95–99

    Google Scholar 

  42. Kahn M, Wilke S, Chen B, Fujita K (1988) Nonpeptide mimetics of β-turns: a facile oxidative intramolecular cycloaddition of an azodicarbonyl system. J Am Chem Soc 110:1638–1639

    Article  CAS  Google Scholar 

  43. Su T, Nakanishi H, Xue L, Chen B, Tuladha S, Johnson ME, Kahn M (1993) Nonpeptide β-turn mimetics of enkephalin. Bioorg Med Chem Lett 3:835–840

    Article  CAS  Google Scholar 

  44. Fecik RA, Frank KE, Gentry EJ, Menon SR, Mitscher LA, Telikepalli H (1998) The search for orally active medications through combinatorial chemistry. J Comb Chem 18:149–184

    Google Scholar 

  45. Horton DA, Bourne GT, Smythe ML (2000) Exploring privileged structures: The combinatorial synthesis of cyclic peptides. Mol Divers 5:289–304

    Article  CAS  Google Scholar 

  46. Ripka WC, De Lucca GV, Bach AC, Pottorf RS, Blaney JM (1993) Protein β-turn mimetics ii: design, synthesis, and evaluation in the cyclic peptide gramicidin S. Tetrahedron 49:3609–3628

    Article  CAS  Google Scholar 

  47. Ball JB, Alewood PF (1990) Conformation constraints: nonpeptide β-turn mimics. J Mol Recognit 3:55–64

    Article  CAS  Google Scholar 

  48. Kahn M, Chen B (1987) Methodology for the synthesis of mimetics of peptide β-turns. Tetrahedron Lett 28:1623–1626

    Article  CAS  Google Scholar 

  49. Kahn M, Chen B, Zieske P (1987) The design and synthesis of nonpeptide mimic of erabutoxin. Heterocycles 25:29–31

    Article  CAS  Google Scholar 

  50. Gardner B, Nakanishi H, Kahn M (1993) Conformationally constrained nonpeptide β-turn mimetics of enkephalin. Tetrahedron 49:3433–3448

    Article  CAS  Google Scholar 

  51. Reddy DS, Vander Velde D, Aube J (2004) Synthesis and conformational studies of dipeptides constrained by disubstituted 3-(aminoethoxy)propionic acid linkers. J Org Chem 69:1716–1719

    Article  CAS  Google Scholar 

  52. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  53. Smellie A, Kahn SD, Teig SL (1995) Analysis of conformational coverage. 1. Validation and estimation of coverage. J Chem Inf Comput Sci 35:285–294

    Google Scholar 

  54. Smellie A, Kahn SD, Teig SL (1995) Analysis of conformational coverage. 2. Applications of conformational models. J Chem Inf Comput Sci 35:295–304

    CAS  Google Scholar 

  55. Douglas AJ, Mulholland G, Walker B, Guthrie DJS, Elmore DT, Murphy RF (1988) The preparation of a C-terminal gastrin peptide containing a synthetic B-bend mimetic. Biochem Soc Trans 16:175–176

    CAS  Google Scholar 

  56. Li W, Burgess K (1999) A new solid-phase linker for Suzuki coupling with concomitant macrocyclization: synthesis of beta-turn mimics. Tetrahedron Lett 40:6527–6530

    Article  CAS  Google Scholar 

  57. Halab L, Lubell WD (1999) Use of steric interactions to control peptide turn geometry. Synthesis of type VI beta-turn mimics with 5-ter-butylproline. J Org Chem 64:3312–3321

    Article  CAS  Google Scholar 

  58. Terrett N (1999) Combinatorial chemistry—combinatorial sarcodictyin libraries. Drug Discov Today 4:141

    Article  Google Scholar 

  59. Rosenquist S, Souers AJ, Virgilio AA, Schurer SS, Ellman JA (1999) Synthesis, screening, and optimization of libraries of medium ring heterocyclic beta-turn mimetics. Abstr Papers Am Chem Soc 217:212

    Google Scholar 

  60. Gardner RR, Liang GB, Gellman SH (1999) Beta-turn and beta-hairpin mimicry with tetrasubstituted alkenes. J Am Chem Soc 121:1806–1816

    Article  CAS  Google Scholar 

  61. Lombardi A, D’Auria G, Maglio O, Nastri F, Quartara L, Pedone C, Pavone V (1998) A novel rigid beta-turn molecular scaffold. J Am Chem Soc 120:5879–5886

    Article  CAS  Google Scholar 

  62. Fink BE, Kym PR, Katzenellenbogen JA (1998) Design, synthesis, and conformational analysis of a proposed type I beta-turn mimic. J Am Chem Soc 120:4334–4344

    Article  CAS  Google Scholar 

  63. Tran TT, Treutlein HR, Burgess AW (2001) Conformational analysis of thiopeptides: derivation of Sp2 sulfur parameters for the CFF91 force field. J Comput Chem 22:1010–1025

    Article  CAS  Google Scholar 

  64. Tran TT, Treutlein HR, Burgess AW (2001) Conformational analysis of thiopeptides: (ϕ, ψ) maps of thio substituted dipeptides. J Comput Chem 22:1026–1037

    Article  CAS  Google Scholar 

  65. Tran TT, Treutlein HR, Burgess AW, Perich J (2001) Synthesis, X-ray crystallographic structures of thio substituted N-acetyl N’-methylamide alanine and testing of sp2 sulfur parameters of the CFF91 force field. J Pept Res 58:67–78

    Article  CAS  Google Scholar 

  66. Tran TT, Burgess AW, Treutlein HR, Zeng J (2001) Conformational analysis of thiopeptides: (ϕ, ψ) conformational free energy map of thio substituted alanine dipeptides. J Mol Graph Model 20:247–258

    Google Scholar 

  67. Tran TT, Burgess AW, Treutlein HR, Zeng J (2002) Effects of thioamide substitution on the conformation and relative stability of α- and 310- helices. J Am Chem Soc 124:5222–5230

    Article  CAS  Google Scholar 

  68. Tran TT, Treutlein HR, Burgess AW (2006) Designing amino acid residues with single-conformations. Protein Eng Des Sel 19:401–408

    Article  CAS  Google Scholar 

  69. Hutchinson EG, Thornton JM (1994) A revised set of potentials for β-turn formation in proteins. Protein Sci 3:2207–2216

    Article  CAS  Google Scholar 

  70. Tran TT, McKie J, Meutermans WDF, Bourne GT, Andrews PR, Smythe ML (2005) Topological side-chain classification of β-turns: ideal motifs for peptidomimetic development. J Comput Aided Mol Des 19:551–566

    Article  CAS  Google Scholar 

  71. SciFinder Scholar (2006) Copyright by The American Chemical Society: Washington

  72. Poupaert J, Carato P, Colacino E (2005) 2(3H)-benzoxazolone and bioisosters as “privileged scaffold” in the design of pharmacological probes. Curr Med Chem 12:877–885

    Article  CAS  Google Scholar 

  73. Flohr S, Stengelin S, Gossel M, Klabunde T, Stahl P, Safar P, Spoonamore J, Smrcina M, Klein JT, Merriman GH, Whiteley BK, Lanter C, Bordeau KJ, Yang Z (2004) Preparation of hexahydropyrazino[1,2-a]pyrimidine-4,7-diones as anorectic agents. WO 2004-EP770 20040129

  74. Schaper W, Willms L, Rosinger C, Hacker E, Rose E, Schmutzler D (2005) Preparation of quinoxalin-2-one derivatives as herbicide safeners. WO 2005112630; US 2005256000; DE 102004023332

  75. Unger L, Raschack M, Wernet W, Boehm H-J, Riechers H (1995) Preparation of annelated 2-oxopiperazine endothelin antagonists. DE 4341663

  76. Epperson JR, Hewanwasam P, Meanwell NA, Boissard CG, VK, G (1993) Post-Munson, D. Synthesis and excitatory amino acid pharmacology of some novel quinoxalinediones. Bioorg Med Chem 3:2801–2804

    Google Scholar 

  77. Joergensen AS, Stidsen CE, Faarup P, Groenvald FC (1991) Preparation of 1-carboxyalkyl-2,3-dioxoquinoxalines as glycine antagonists. WO 9113878

  78. Patchett AA, Nargund RP (2000) Privileged structures—an update. Annu Rep Med Chem 35:289–298

    Article  CAS  Google Scholar 

  79. Evans BE, Rittle KE, Bock MG, Diapardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS, Chang RSL, Lotti VJ, Cerino DJ, Chen TB, Kling PJ, Kunkel KA, Springer JP, Hirshfield J (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:2235–2246

    Article  CAS  Google Scholar 

  80. Amblard M, Martinez J, Berge G (2001) Preparation of oligomers of nonpeptide restricted mimetics of dipeptides or tripeptides and their use in the synthesis of proteins and polypeptides. WO 2001051506

  81. Rolland C, Gozalbes R, Nicolay E, Paugam M-F, Coussy L, Bardosa F, Horvath D, Revah F (2005) G-protein-coupled receptor affinity prediction based on the use of a profiling Dataset: QSAR design, synthesis, and experimental validation. J Med Chem 48:6563–6574

    Article  CAS  Google Scholar 

  82. Webb T, Chianelli D, Kim Y-C (2003) Preparation of quinoline-spiro-imidazolidinedione somatostatin analogs as agonists, partial agonists, or antagonists of somatostatin receptors. WO 2003090677

  83. Horton DA, Bourne GT, Smythe ML (2002) Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J Comput Aided Mol Des 16:415–430

    Article  CAS  Google Scholar 

  84. Golebiowski A, Klopfenstein SR (2001) Preparation of peptide β-turn mimetic compounds. WO 2000-US34832 20001220

  85. Feng Y, Burgess K (1999) Solid-phase SNAr macrocyclizations to give turn-extended-turn peptidomimetics. Chem Eur J 5:3261–3672

    Article  CAS  Google Scholar 

  86. Feng Y, Wang Z, Jin S, Burgess K (1998) SNAr cyclizations to form cyclic peptidomimetics of β-turns. J Am Chem Soc 120:10768–10769

    Article  CAS  Google Scholar 

  87. Dobson CM (2004) Chemical space and biology. Nature 432:824–828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Greg Bourne for stimulating discussions and the Australian Research Council for financial Support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tran T. Tran or Mark L. Smythe.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, T.T., Kulis, C., Long, S.M. et al. Defining scaffold geometries for interacting with proteins: geometrical classification of secondary structure linking regions. J Comput Aided Mol Des 24, 917–934 (2010). https://doi.org/10.1007/s10822-010-9384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9384-y

Keywords

Navigation