Skip to main content
Log in

Biased retrieval of chemical series in receptor-based virtual screening

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Using the kinases in the DUD dataset and an in-house HTS dataset from PI3K-γ, receptor-based virtual screening experiments were performed using Glide SP docking. While significant enrichments were observed for eight of the nine targets in the set, more detailed analyses highlighted that much of the early enrichment (10–80%) is the result of retrieval of a single cluster of active compounds. This biased retrieval was not necessarily due to early enrichment of the cluster containing the co-crystallized ligand. Virtual screening validation studies could thus benefit from including cluster-based analyses to assess enrichment of diverse chemotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35:D301–D303

    Article  CAS  Google Scholar 

  2. Joseph-McCarthy D, Baber JC, Feyfant E, Thompson DC, Humblet C (2007) Lead optimization via high-throughput molecular docking. Curr Opin Drug Discov Dev 10(3):264–274

    CAS  Google Scholar 

  3. Cavasotto CN, Orry AJW (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 7(10):1006–1014

    Article  CAS  Google Scholar 

  4. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49(6):1455–1474

    Article  CAS  Google Scholar 

  5. Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43(25):4759–4767

    Article  CAS  Google Scholar 

  6. Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44(7):1035–1042

    Article  CAS  Google Scholar 

  7. Schulz-Gasch T, Stahl M (2003) Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. J Mol Model 9(1):47–57

    CAS  Google Scholar 

  8. Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins Struct Funct Bioinf 57(2):225–242

    Article  CAS  Google Scholar 

  9. Perola E, Walters WP, Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins Struct Funct Bioinf 56(2):235–249

    Article  CAS  Google Scholar 

  10. Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP (2005) Comparison of automated docking programs as virtual screening tools. J Med Chem 48(4):962–976

    Article  CAS  Google Scholar 

  11. Kontoyianni M, Sokol Glenn S, McClellan Laura M (2005) Evaluation of library ranking efficacy in virtual screening. J Comput Chem 26(1):11–22

    Article  CAS  Google Scholar 

  12. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931

    Article  CAS  Google Scholar 

  13. McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley S, Maiorov V, Truchon J-F, Cornell WD (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47(4):1504–1519

    Article  CAS  Google Scholar 

  14. Muegge I, Enyedy IJ (2004) Virtual screening for kinase targets. Curr Med Chem 11(6):693–707

    Article  CAS  Google Scholar 

  15. McInnes C (2006) Improved lead-finding for kinase targets using high-throughput docking. Curr Opin Drug Discov Dev 9(3):339–347

    CAS  Google Scholar 

  16. Peng H, Huang N, Qi J, Xie P, Xu C, Wang J, Yang C (2003) Identification of novel inhibitors of BCR-ABL tyrosine kinase via virtual screening. Bioorg Med Chem Lett 13(21):3693–3699

    Article  CAS  Google Scholar 

  17. Hancock CN, Macias A, Lee EK, Yu SY, MacKerell AD Jr, Shapiro P (2005) Identification of novel extracellular signal-regulated kinase docking domain inhibitors. J Med Chem 48(14):4586–4595

    Article  CAS  Google Scholar 

  18. Park H, Bahn YJ, Jeong DG, Woo EJ, Kwon JS, Ryu SE (2008) Identification of novel inhibitors of extracellular signal-regulated kinase 2 based on the structure-based virtual screening. Bioorg Med Chem Lett 18(20):5372–5376

    Article  CAS  Google Scholar 

  19. Toledo-Sherman L, Deretey E, Slon-Usakiewicz JJ, Ng W, Dai J-R, Foster JE, Redden PR, Uger MD, Liao LC, Pasternak A, Reid N (2005) Frontal affinity chromatography with MS detection of EphB2 tyrosine kinase receptor. 2. Identification of small-molecule inhibitors via coupling with virtual screening. J Med Chem 48(9):3221–3230

    Article  CAS  Google Scholar 

  20. Richardson CM, Nunns CL, Williamson DS, Parratt MJ, Dokurno P, Howes R, Borgognoni J, Drysdale MJ, Finch H, Hubbard RE, Jackson PS, Kierstan P, Lentzen G, Moore JD, Murray JB, Simmonite H, Surgenor AE, Torrance CJ (2007) Discovery of a potent CDK2 inhibitor with a novel binding mode, using virtual screening and initial, structure-guided lead scoping. Bioorg Med Chem Lett 17(14):3880–3885

    Article  CAS  Google Scholar 

  21. Cavasotto CN, Ortiz MA, Abagyan RA, Piedrafita FJ (2006) In silico identification of novel EGFR inhibitors with antiproliferative activity against cancer cells. Bioorg Med Chem Lett 16(7):1969–1974

    Article  CAS  Google Scholar 

  22. Li J, Tan J-z, Chen L-l, Zhang J, Shen X, Mei C-l, Fu L-l, Lin L-p, Ding J, Xiong B, Xiong X-s, Liu H, Luo X-m, Jiang H-l (2006) Design, synthesis and antitumor evaluation of a new series of N-substituted-thiourea derivatives. Acta Pharmacol Sin 27(9):1259–1271

    Article  CAS  Google Scholar 

  23. Warner SL, Bashyam S, Vankayalapati H, Bearss DJ, Han H, Von Hoff DD, Hurley LH (2006) Identification of a lead small-molecule inhibitor of the Aurora kinases using a structure-assisted, fragment-based approach. Mol Cancer Ther 5(7):1764–1773

    Article  CAS  Google Scholar 

  24. Fu D-H, Jiang W, Zheng J-T, Zhao G-Y, Li Y, Yi H, Li Z-R, Jiang J-D, Yang K-Q, Wang Y, Si S-Y (2008) Jadomycin B, an Aurora-B kinase inhibitor discovered through virtual screening. Mol Cancer Ther 7(8):2386–2393

    Article  CAS  Google Scholar 

  25. Foloppe N, Fisher LM, Howes R, Potter A, Robertson AGS, Surgenor AE (2006) Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg Med Chem 14(14):4792–4802

    Article  CAS  Google Scholar 

  26. Pierce AC, Jacobs M, Stuver-Moody C (2008) Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase. J Med Chem 51(6):1972–1975

    Article  CAS  Google Scholar 

  27. Peach ML, Tan N, Choyke SJ, Giubellino A, Athauda G, Burke TR Jr, Nicklaus MC, Bottaro DP (2009) Directed discovery of agents targeting the met tyrosine kinase domain by virtual screening. J Med Chem 52(4):943–951

    Article  CAS  Google Scholar 

  28. Qin Z, Zhang J, Xu B, Chen L, Wu Y, Yang X, Shen X, Molin S, Danchin A, Jiang H, Qu D (2006) Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus epidermidis infections. BMC Microbiol 6:96

    Article  Google Scholar 

  29. Hu X, Prehna G, Stebbins CE (2007) Targeting plague virulence factors: a combined machine learning method and multiple conformational virtual screening for the discovery of yersinia protein kinase A inhibitors. J Med Chem 50(17):3980–3983

    Article  CAS  Google Scholar 

  30. Segura-Cabrera A, Rodriguez-Perez MA (2008) Structure-based prediction of Mycobacterium tuberculosis shikimate kinase inhibitors by high-throughput virtual screening. Bioorg Med Chem Lett 18(11):3152–3157

    Article  CAS  Google Scholar 

  31. Cozza G, Bonvini P, Zorzi E, Poletto G, Pagano MA, Sarno S, Donella-Deana A, Zagotto G, Rosolen A, Pinna LA, Meggio F, Moro S (2006) Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application. J Med Chem 49(8):2363–2366

    Article  CAS  Google Scholar 

  32. Golub AG, Yakovenko OY, Bdzhola VG, Sapelkin VM, Zien P, Yarmoluk SM (2006) Evaluation of 3-Carboxy-4(1H)-quinolones as inhibitors of human protein kinase CK2. J Med Chem 49(22):6443–6450

    Article  CAS  Google Scholar 

  33. Cozza G, Gianoncelli A, Montopoli M, Caparrotta L, Venerando A, Meggio F, Pinna LA, Zagotto G, Moro S (2008) Identification of novel protein kinase CK1 delta (CK1delta) inhibitors through structure-based virtual screening. Bioorg Med Chem Lett 18(20):5672–5675

    Article  CAS  Google Scholar 

  34. Kang NS, Lee GN, Kim CH, Bae MA, Kim I, Cho YS (2009) Identification of small molecules that inhibit GSK-3beta through virtual screening. Bioorg Med Chem Lett 19(2):533–537

    Article  CAS  Google Scholar 

  35. Sun D, Chuaqui C, Deng Z, Bowes S, Chin D, Singh J, Cullen P, Hankins G, Lee W-C, Donnelly J, Friedman J, Josiah S (2006) A kinase-focused compound collection: compilation and screening strategy. Chem Biol Drug Des 67(6):385–394

    Article  CAS  Google Scholar 

  36. Gozalbes R, Simon L, Froloff N, Sartori E, Monteils C, Baudelle R (2008) Development and experimental validation of a docking strategy for the generation of kinase-targeted libraries. J Med Chem 51(11):3124–3132

    Article  CAS  Google Scholar 

  37. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288

    Article  CAS  Google Scholar 

  38. Najmanovich R, Kuttner J, Sobolev V, Edelman M (2000) Side-chain flexibility in proteins upon ligand binding. Proteins 39(3):261–268

    Article  CAS  Google Scholar 

  39. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47(3):558–565

    Article  CAS  Google Scholar 

  40. Verdonk ML, Mortenson PN, Hall RJ, Hartshorn MJ, Murray CW (2008) Protein-ligand docking against non-native protein conformers. J Chem Inf Model 48(11):2214–2225

    Article  CAS  Google Scholar 

  41. Murray CW, Baxter CA, Frenkel AD (1999) The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase. J Comput Aided Mol Des 13(6):547–562

    Article  CAS  Google Scholar 

  42. Jain AN (2008) Bias, reporting, and sharing: computational evaluations of docking methods. J Comput Aided Mol Des 22(3–4):201–212

    Article  CAS  Google Scholar 

  43. Rapp CS, Schonbrun C, Jacobson MP, Kalyanaraman C, Huang N (2009) Automated site preparation in physics-based rescoring of receptor ligand complexes. Proteins 77:52–61

    Article  CAS  Google Scholar 

  44. Jain AN (2009) Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation. J Comput Aided Mol Des 23(6):355–374

    Article  CAS  Google Scholar 

  45. Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67(1):83–84

    Article  CAS  Google Scholar 

  46. Claussen H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308(2):377–395

    Article  CAS  Google Scholar 

  47. Knegtel RM, Kuntz ID, Oshiro CM (1997) Molecular docking to ensembles of protein structures. J Mol Biol 266(2):424–440

    Article  CAS  Google Scholar 

  48. Verdonk ML, Berdini V, Hartshorn MJ, Mooij WT, Murray CW, Taylor RD, Watson P (2004) Virtual screening using protein-ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci 44(3):793–806

    CAS  Google Scholar 

  49. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801

    Article  CAS  Google Scholar 

  50. Irwin JJ (2008) Community benchmarks for virtual screening. J Comput Aided Mol Des 22(3–4):193–199

    Article  CAS  Google Scholar 

  51. Maestro (2006) Schrodinger, LLC, Portland, OR, USA

  52. Schrodinger (2008) LigPrep 2.2. Manual. p 108

  53. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  Google Scholar 

  54. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  CAS  Google Scholar 

  55. Brooijmans N, Humblet C (2010) Chemical space sampling by different scoring functions and crystal structures. J Comput Aided Mol Des 24(5):433–447

    Article  CAS  Google Scholar 

  56. Maestro (2007) Schrodinger, LLC, New York, NY

  57. Venturelli A, Tondi D, Cancian L, Morandi F, Cannazza G, Segatore B, Prati F, Amicosante G, Shoichet BK, Costi MP (2007) Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy. J Med Chem 50(23):5644–5654

    Article  CAS  Google Scholar 

  58. OMEGA (2007) OpenEye Scientific Software, Santa Fe, NM

  59. Glide (2007) In: Manual. Schrodinger, LLC, Portland, OR, USA, p 112

  60. Nicholls A (2008) What do we know and when do we know it? J Comput Aided Mol Des 22(3–4):239–255

    Article  CAS  Google Scholar 

  61. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    CAS  Google Scholar 

  62. Good AC, Oprea TI (2008) Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection? J Comput Aided Mol Des 22(3–4):169–178

    Article  CAS  Google Scholar 

  63. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6(4):909–919

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank David C. Thompson, Brajesh K. Rai, J. Christian Baber, Kristi Yi Fan, and Yongbo for participating in the virtual screening studies using the DUD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasja Brooijmans.

Additional information

Natasja Brooijmans and Jason B. Cross contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooijmans, N., Cross, J.B. & Humblet, C. Biased retrieval of chemical series in receptor-based virtual screening. J Comput Aided Mol Des 24, 1053–1062 (2010). https://doi.org/10.1007/s10822-010-9394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9394-9

Keywords

Navigation