Skip to main content

Advertisement

Log in

Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Thymidine monophosphate kinase (TMPKmt) is an essential enzyme for nucleotide metabolism in Mycobacterium tuberculosis, and thus an attractive target for novel antituberculosis agents. In this work, we have explored the chemical space around the 2′,3′-bicyclic thymidine nucleus by designing and in silico screening of a virtual focused library selected via structure based methods to identify more potent analogs endowed with favorable ADME-related properties. In all the library members we have exchanged the ribose ring of the template with a cyclopentane moiety that is less prone to enzymatic degradation. In addition, we have replaced the six-membered 2′,3′-ring by a number of five-membered and six-membered heterocyclic rings containing alternative proton donor and acceptor groups, to exploit the interaction with the carboxylate groups of Asp9 and Asp163 as well as with several cationic residues present in the vicinity of the TMPKmt binding site. The three-dimensional structure of the TMPKmt complexed with 5-hydroxymethyl-dUMP, an analog of dTMP, was employed to develop a QSAR model, to parameterize a scoring function specific for the TMPKmt target and to select analogues which display the highest predicted binding to the target. As a result, we identified a small highly focused combinatorial subset of bicyclic thymidine analogues as virtual hits that are predicted to inhibit the mycobacterial TMPK in the submicromolar concentration range and to display favorable ADME-related properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ADME:

Adsorption, distribution, metabolism and excretion

AZTMP:

3′-azido-2′-deoxythymidine monophosphate

CFF91:

Consistent class II force field

dTTP:

Deoxythymidine triphosphate

dUMP:

Deoxyuridine monophosphate

HB:

Hydrogen bond

TEM:

5′-CH2OH dUMP inhibitor

TMPKh :

Human thymidine monophosphate kinase

TMPKmt :

Mycobacterium tuberculosis thymidine monophosphate kinase

References

  1. Global Tuberculosis Control—Epidemiology, Strategy, Financing (2009) WHO report 2009.411, World Health Organization, Geneva. Retrieved from http://www.who.int/tb/publications/global_report/2009/en/index.html. 1/9/2010

  2. Ginsberg AM, Spigelman M (2007) Challenges in tuberculosis drug research and development. Nat Med 13:290–294

    Article  CAS  Google Scholar 

  3. WHO Global Task Force: Outlines Measures to Combat XDR-TB Worldwide (2006) WHO press release, World Health Organization, Geneva. Retrieved from http://www.who.int/mediacentre/news/notes/2006/np29/en/index.html. 1/9/2010

  4. Mitnick CD, McGee B, Peloquin CA (2009) Tuberculosis pharmacotherapy: strategies to optimize patient care. Expert Opin Pharmacother 10:381–401

    Article  CAS  Google Scholar 

  5. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry C III, Tekaia CF, Badcock K, Basham D, Brown D, Chillingworth DT, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  Google Scholar 

  6. Long MC, Parker WB (2006) Structure-activity relationship for nucleoside analogs as inhibitors or substrates of adenosine kinase from Mycobacterium tuberculosis. I. Modifications to the adenine moiety. Biochem Pharmacol 71:1671–1682

    Article  CAS  Google Scholar 

  7. Williams KJ, Duncan K (2007) Current strategies for identifying and validating targets for new treatment-shortening drugs for TB. Curr Mol Med 7:297–307

    Article  CAS  Google Scholar 

  8. Munier-Lehmann H, Chafotte A, Pochet S, Labesse G (2001) Thymidylate kinase of Mycobacterium tuberculosis: a chimera sharing properties common to eukaryotic and bacterial enzymes. Protein Sci 10:1195–1205

    Article  CAS  Google Scholar 

  9. Anderson E (1973) In: Boyer PD (ed) The enzymes, vol 8. Academic Press, New York, pp 49–96

    Google Scholar 

  10. Sclafani RA, Fangman WL (1984) Yeast gene CDC8 encodes thymidylate kinase and is complemented by herpes thymidine kinase gene TK. Proc Natl Acad Sci USA 81:5821–5825

    Article  CAS  Google Scholar 

  11. Li de la Sierra I, Munier-Lehmann H, Gilles AM, Bârzu O, Delarue M (2001) X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 A resolution. J Mol Biol 311:87–100

    Article  Google Scholar 

  12. Li de la Sierra I, Munier-Lehmann H, Gilles AM, Bârzu O, Delarue M (2000) Crystallization and preliminary X-ray analysis of the thymidylate kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect D Biol Crystallogr 56:226–228

    Article  Google Scholar 

  13. Vanheusden V, Munier-Lehmann H, Pochet S, Herdewijna P, Van Calenbergh S (2002) Synthesis and evaluation of thymidine-5′-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. Bioorg Med Chem Lett 12:2695–2698

    Article  CAS  Google Scholar 

  14. Vanheusden V, Munier-Lehmann H, Froeyen M, Busson R, Rozenski J, Herdewijn P, Van Calenbergh S (2004) Discovery of bicyclic thymidine analogues as selective and high-affinity inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. J Med Chem 47:6187–6194

    Article  CAS  Google Scholar 

  15. Haouz A, Vanheusden V, Munier-Lehmann H, Froeyen M, Herdewijn P, Van Calenbergh S, Delarue M (2003) Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism. J Biol Chem 278:4963–4971

    Article  CAS  Google Scholar 

  16. Pochet S, Dugué L, Douguet D, Labesse G, Munier-Lehmann H (2002) Nucleoside analogues as inhibitors of thymidylate kinases: possible therapeutic applications. ChemBioChem 3:108–110

    Article  CAS  Google Scholar 

  17. Vanheusden V, Van Rompaey P, Munier-Lehmann H, Pochet S, Herdewijn P, Van Calenbergh S (2003) Thymidine and thymidine-5′-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. Bioorg Med Chem Lett 13:3045–3048

    Article  CAS  Google Scholar 

  18. Vanheusden V, Munier-Lehmann H, Froeyen M, Dugué L, Heyerick A, De Keukeleire D, Pochet S, Busson R, Herdewijn P, Van Calenbergh S (2003) 3′-C-branched-chain-substituted nucleosides and nucleotides as potent inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. J Med Chem 46:3811–3821

    Article  CAS  Google Scholar 

  19. Pochet S, Dugué L, Labesse G, Delepierre M, Munier-Lehmann H (2003) Comparative study of purine and pyrimidine nucleoside analogues acting on the thymidylate kinases of Mycobacterium tuberculosis and of humans. ChemBioChem 4:742–747

    Article  CAS  Google Scholar 

  20. Van Daele I, Munier-Lehmann H, Hendrickx PM, Marchal G, Chavarot P, Froeyen M, Qing L, Martins CJ, Van Calenbergh S (2006) Synthesis and biological evaluation of bicyclic nucleosides as inhibitors of M. tuberculosis thymidylate kinase. ChemMedChem 1:1081–1090

    Article  Google Scholar 

  21. Van Daele I, Munier-Lehmann H, Froeyen M, Balzarini J, Van Calenbergh S (2007) Rational design of 5′-thiourea-substituted alpha-thymidine analogues as thymidine monophosphate kinase inhibitors capable of inhibiting mycobacterial growth. J Med Chem 50:5281–5292

    Article  Google Scholar 

  22. Gasse C, Douguet D, Huteau V, Marchal G, Munier-Lehmann H, Pochet S (2008) Substituted benzyl-pyrimidines targeting thymidine monophosphate kinase of Mycobacterium tuberculosis: synthesis and in vitro anti-mycobacterial activity. Bioorg Med Chem 16:6075–6085

    Article  CAS  Google Scholar 

  23. Familiar O, Munier-Lehmann H, Negri A, Gago F, Douguet D, Rigouts L, Hernández A-I, Camarasa M-J, Pérez-Pérez M-J (2008) Exploring acyclic nucleoside analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. ChemMedChem 3:1083–1093

    Article  CAS  Google Scholar 

  24. Frecer V, Burello E, Miertus S (2005) Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1. Bioorg Med Chem 13:5492–5501

    Article  CAS  Google Scholar 

  25. Frecer V, Megnassan E, Miertus S (2009) Design and in silico screening of combinatorial library of antimalarial analogs of triclosan inhibiting Plasmodium falciparum enoyl-acyl carrier protein reductase. Eur J Med Chem 44:3009–3019

    Article  CAS  Google Scholar 

  26. Rungrotmongkol T, Frecer V, De-Eknamkul W, Hannongbua S, Miertus S (2009) Design of oseltamivir analogs inhibiting neuraminidase of avian influenza virus H5N1. Antivir Res 82:51–58

    Article  CAS  Google Scholar 

  27. Rungrotmongkol T, Udommaneethanakit T, Frecer V, Miertus S (2010) Combinatorial design of avian influenza neuraminidase inhibitors containing pyrrolidine core with a reduced susceptibility to viral drug resistance. Comb Chem High Throughput Screen 13:268–277

    Article  CAS  Google Scholar 

  28. Frecer V, Miertus S (2010) Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of Dengue virus NS2B-NS3 protease. J Comput Aided Mol Des 24:195–212

    Article  CAS  Google Scholar 

  29. Pérez-Pérez M-J, Priego EM, Hernández AI, Camarasa MJ, Balzarini J, Liekens S (2005) Thymidine phosphorylase inhibitors: recent developments and potential therapeutic applications. Mini-Rev Med Chem 5:1113–1123

    Article  Google Scholar 

  30. Kifli N, De Clercq E, Balzarini J, Simons C (2004) Novel bicyclic sugar modified nucleosides: synthesis, conformational analysis and antiviral evaluation. Bioorg Med Chem 12:3247–4252

    Article  CAS  Google Scholar 

  31. Cerius2 Life Sciences software, version 4.6 (2002) Accelrys, San Diego, CA

  32. Peters KP, Fauck J, Frommel C (1996) The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J Mol Biol 256:201–213

    Article  CAS  Google Scholar 

  33. Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput C22:1025–1034

    Article  Google Scholar 

  34. Seifert MH (2009) Targeted scoring functions for virtual screening. Drug Discov Today 14:562–569

    Article  Google Scholar 

  35. Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243–256

    Article  Google Scholar 

  36. Böhm HJ (1994) On the use of LUDI to search the Fine Chemicals Directory for ligands of proteins of known three-dimensional structure. J Comput Aided Mol Des 8:623–632

    Article  Google Scholar 

  37. Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42:791–804

    Article  CAS  Google Scholar 

  38. Muegge I, Martin YC, Hajduk PJ, Fesik SW (1999) Evaluation of PMF scoring in docking weak ligands to the FK506 binding protein. J Med Chem 42:2498–2503

    Article  CAS  Google Scholar 

  39. Muegge I (2001) Effect of Ligand Volume Correction on PMF Scoring. J Comput Chem 22:418–425

    Article  CAS  Google Scholar 

  40. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol 2:317–324

    Article  CAS  Google Scholar 

  41. Verkhivker GM, Bouzida D, Gehlhaar DK, Reijto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW (2000) Deciphering common failures in molecular docking of ligand-protein complexes. J Comput Aided Mol Des 14:731–751

    Article  CAS  Google Scholar 

  42. Holloway MK, McGaughey GB, Coburn CA, Stachel SJ, Jones KG, Stanton EL, Gregro AR, Lai M-T, Crouthamel M-C, Pietrak BL, Munshi SK (2007) Evaluating scoring functions for docking and designing beta-secretase inhibitors. Bioorg Med Chem Lett 17:823–827

    Article  CAS  Google Scholar 

  43. Kontoyianni M, Sokol GS, McClellan LM (2005) Evaluation of library ranking efficacy in virtual screening. J Comput Chem 26:11–22

    Article  CAS  Google Scholar 

  44. Krovat EM, Langer T (2004) Impact of scoring functions on enrichment in docking-based virtual screening: an application study on renin inhibitors. J Chem Inf Comput Sci 44:1123–1129

    CAS  Google Scholar 

  45. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 47:2287–2303

    Article  Google Scholar 

  46. Insight-II Life Sciences software, version (2005) Accelrys, San Diego, CA

  47. Frecer V, Berti F, Benedetti F, Miertus S (2008) Design of peptidomimetic inhibitors of aspartic protease of HIV-1 including–PheΨPro–core and favorable ADME properties. J Mol Graphics Model 27:376–387

    Article  CAS  Google Scholar 

  48. Maple JR, Hwang MJ, Stockfish TP, Dinur U, Waldman M, Ewing CS, Hagler AT (1994) Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem 15:162–182

    Article  CAS  Google Scholar 

  49. QikProp ADME Prediction software, version 3.2, Schrödinger, New York, NY

  50. Duffy EM, Jorgensen WL (2000) Prediction of properties from simulations: free energies of solvation in hexadecane, octanol, and water. J Am Chem Soc 122:2878–2888

    Article  CAS  Google Scholar 

  51. Jorgensen WL, Duffy EM (2000) Prediction of drug solubility from Monte Carlo simulations. Bioorg Med Chem Lett 10:1155–1158

    Article  CAS  Google Scholar 

  52. Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 54:355–366

    Article  CAS  Google Scholar 

  53. Rappé AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363

    Article  Google Scholar 

  54. Available Chemicals Directory, version 3.0, Symyx Technologies, Santa Clara, CA

  55. Blondin C, Serina L, Wiesmüller L, Gilles AM, Bârzu O (1994) Improved spectrophotometric assay of nucleoside monophosphate kinase activity using the pyruvate kinase/lactate dehydrogenase coupling system. Anal Biochem 220:219–222

    Article  CAS  Google Scholar 

  56. Srinivasan J, Miller J, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of RNA hairpin loops and helices. J Biol Struct Dyn 16:671–682

    CAS  Google Scholar 

  57. Chong LT, Duan Y, Wang L, Massova I, Kollman PA (1999) Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proc Natl Acad Sci USA 96:14330–14335

    Article  CAS  Google Scholar 

  58. Lee MR, Duan Y, Kollman PA (2000) Use of MM-PBSA in estimating the free energies of proteins: application to native, intermediates, nand unfolded villin headpiece. Proteins Struct Funct Genet 39:309–316

    Article  CAS  Google Scholar 

  59. Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  60. Gilson MK, Honig B (1991) The inclusion of electrostatic hydration energies in molecular mechanics calculations. J Comput Aided Mol Des 5:5–20

    Article  CAS  Google Scholar 

  61. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrer A, Honig B (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J Comput Chem 23:128–137

    Article  CAS  Google Scholar 

  62. Fischer S, Smith JC, Verma C (2001) Dissecting the vibrational entropy change on protein/ligand binding: burial of a water molecule in bovine pancreatic trypsin inhibitor. J Phys Chem B 105:8050–8055

    Article  CAS  Google Scholar 

  63. Schwarzl SM, Tschopp TB, Smith JC, Fischer S (2002) Can the calculation of ligand binding free energies be improved with continuum solvent electrostatics and an ideal-gas entropy correction? J Comput Chem 23:1143–1149

    Article  CAS  Google Scholar 

  64. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 46:3–26

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been done within the ICS-UNIDO global program on Rational Drug Design and Discovery. Overall support of this work by ICS-UNIDO is gratefully acknowledged. We thank to Dr. Eugene Megnassan for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Miertus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frecer, V., Seneci, P. & Miertus, S. Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. J Comput Aided Mol Des 25, 31–49 (2011). https://doi.org/10.1007/s10822-010-9399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9399-4

Keywords

Navigation