Skip to main content
Log in

Interaction of clozapine and its nitrenium ion with rat D2 dopamine receptors: in vitro binding and computational study

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The interaction of diazepine analogues like clozapine or olanzapine with D2 receptor was greatly affected by a mixture of HRP/H2O2 known to induce the formation of nitrenium ion. Unlike diazepine derivatives, the oxidative mixture had low impact on the affinity of oxa- and thiazepine derivatives such as loxapine, clothiapine or JL13 for the D2 receptor. Molecular docking simulations revealed a huge difference between the mode of interaction of clozapine nitrenium ion and the parent drug. Electronic and geometric changes of the tricyclic ring system caused by the oxidation appeared to prevent the compound finding the correct binding mode and could therefore explain the difference observed in binding affinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GPCR:

G protein-coupled receptor

ICL:

Intracellular loop

ECL:

Extracellular loop

MD:

Molecular dynamics

HRP:

Horseradish peroxidase

EDTA:

Ethylene diamine tetraacetic acid

References

  1. Meltzer HY, Matsubara S, Lee J-C (1989) J Pharmacol Exp Ther 251:238–246

    CAS  Google Scholar 

  2. Kapur S, Seeman P (2000) J Psychiatry Neurosci 25:161–166

    CAS  Google Scholar 

  3. Fischer V, Haar JA, Greiner L, Lloyd RV, Mason RP (1991) Mol Pharmacol 40:846–853

    CAS  Google Scholar 

  4. Liégeois J-F, Rogister F, Delarge J, Pincemail J (1995) Arch Pharm (Weinheim) 328:109–112

    Article  Google Scholar 

  5. Liégeois J-F, Mouithys-Mickalad A, Bruhwyler J, Delarge J, Petit C, Kauffmann J-M, Lamy M (1997) Biochem Biophys Res Commun 238:252–255

    Article  Google Scholar 

  6. Uetrecht J, Zahid N, Tehim A, Mimfu J, Rakhit S (1997) Chem-Biol Interact 104:117–129

    Article  CAS  Google Scholar 

  7. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  Google Scholar 

  8. Cheng Y-C, Prusoff WH (1973) Biochem Pharmacol 22:3099–3108

    Article  CAS  Google Scholar 

  9. Bunzow JR, Van Tol HHM, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988) Nature 336:783–787

    Article  CAS  Google Scholar 

  10. Schofield PR, Rhee LM, Peralta EG (1987) Nucleic Acids Res 15:3636

    Article  CAS  Google Scholar 

  11. Shi J, Blundell TL, Mizuguchi K (2001) J Mol Biol 310:243–257

    Article  CAS  Google Scholar 

  12. Baldwin JM, Schertler GF, Unger VM (1997) J Mol Biol 272:144–164

    Article  CAS  Google Scholar 

  13. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) Science 318:1258–1265

    Article  CAS  Google Scholar 

  14. Montalvao RW, Smith RE, Lovell SC, Blundell TL (2005) Bioinformatics 21:3719–3725

    Article  CAS  Google Scholar 

  15. Deane CM, Blundell TL (2001) Protein Sci 10:599–612

    Article  CAS  Google Scholar 

  16. Lovell SC, Word JM, Richardson JS, Richardson DC (2000) Protein Struct Funct Genet 40:389–408

    Article  CAS  Google Scholar 

  17. Ballesteros J, Weinstein H (1995) Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  18. Powell MJD (1977) Math Prog 12:241–254

    Article  Google Scholar 

  19. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) J Comput Chem 7:230–252

    Article  CAS  Google Scholar 

  20. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  21. Petcher TJ, Weber H-P (1976) J Chem Soc Perkin Trans 2:1415–1420

    Google Scholar 

  22. Clark M, Cramer RD III, Van Opdenbosch N (1989) J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  23. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219–3288

    Article  CAS  Google Scholar 

  24. Purcell WP, Singer JA (1967) J Chem Eng Data 12:235–246

    Article  CAS  Google Scholar 

  25. Coolidge MB, Marlin JF, Stewart JJPJ (1991) J Comput Chem 123:948–952

    Article  Google Scholar 

  26. Jones G, Willet P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  27. Mansour A, Meng F, Meador-Woodru JH, Taylor LP, Civelli O, Akil H (1992) Eur J Pharmacol 227:205–214

    Article  CAS  Google Scholar 

  28. Heiden W, Moeckel G, Brickmann JA (1993) J Comput Aided Mol Des 7:503–514

    Article  CAS  Google Scholar 

  29. Jegouzo A, Gressier B, Frimat B, Brunet C, Dine T, Luyckx M, Kouach M, Cazin M, Cazin JC (1999) Fundam Clin Pharmacol 13:113–119

    Article  CAS  Google Scholar 

  30. Williams DP, O’Donnell CJL, Maggs JL, Leeder JS, Uetrecht J, Pirmohamed M, Park BK (2003) Chem Res Toxicol 16:1359–1364

    Article  CAS  Google Scholar 

  31. Selent J, Lopez L, Sanz F, Pastor M (2008) ChemMedChem 3:1194–1198

    Article  CAS  Google Scholar 

  32. Hjerde E, Dahl SG, Sylte I (2005) Eur J Med Chem 40:185–194

    Article  CAS  Google Scholar 

  33. Kalani MY, Vaidehi N, Hall SE, Trabanino RJ, Freddolino PL, Kalani MA, Floriano WB, Kam VW, Goddard WA III (2004) Proc Natl Acad Sci USA 101:3815–3820

    Article  Google Scholar 

  34. Sims PA, Wong CF, Vuga D, McCammon JA, Sefton BM (2005) J Comput Chem 26:668–681

    Article  CAS  Google Scholar 

  35. Shimokhina N, Bronowska A, Homans SW (2006) Angew Chem Int Ed Engl 45:6374–6376

    Article  CAS  Google Scholar 

  36. Browning C, Martin E, Loch C, Wurtz JM, Moras D, Stote RH, Dejaegere AP, Billas IM (2007) J Biol Chem 282:32924–32934

    Article  CAS  Google Scholar 

  37. Syme NR, Dennis C, Bronowska A, Paesen GC, Homans SW (2010) J Am Chem Soc 132:8682–8689

    Article  CAS  Google Scholar 

  38. Patole MS, Swaroop A, Ramasarma T (1986) J Neurochem 47:1–8

    Article  CAS  Google Scholar 

  39. Bao L, Avshalumov MV, Patel JC, Lee CR, Miller EW, Chang CJ, Rice ME (2009) J Neurosci 29:9002–9010

    Article  CAS  Google Scholar 

  40. Tabner BJ, Turnbull S, El-Agnaf OM, Allsop D (2002) Free Radic Biol Med 32:1076–1083

    Article  CAS  Google Scholar 

  41. Avshalumov MV, Bao L, Patel JC, Rice ME (2007) Antioxid Redox Signal 9:219–231

    Article  CAS  Google Scholar 

  42. Lefkowitz DL, Lefkowitz SS (2008) Free Rad Biol Med 45:726–731

    Article  CAS  Google Scholar 

  43. Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, De Loore K, Leysen JE (1996) Psychopharmacology (Berl) 124:57–73

    Article  CAS  Google Scholar 

  44. Foster R, Kandanearatchi A, Beasley C, Williams B, Khan N, Fagerhol MK, Everall IP (2006) Eur J Neurosci 24:3561–3566

    Article  Google Scholar 

  45. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC (2009) J Nucl Med 50:1801–1807

    Article  Google Scholar 

  46. Bitanihirwe BK, Woo TU (2011) Neurosci Biobehav Rev 35:878–893

    Article  CAS  Google Scholar 

  47. Santos RX, Cardoso S, Silva S, Correia S, Carvalho C, Crisostomo J, Rodrigues L, Amaral C, Louro T, Matafome P, Santos MS, Proença T, Duarte AL, Seiça R, Moreira PI (2009) J Food Sci 74:H8–H14

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Fonds de la Recherche Scientifique-FNRS (F.R.S.-FNRS) is gratefully acknowledged for financial support. J.-F.L. is Research Director of the F.R.S.-FNRS. S.D. is financially supported by a collective grant from the University of Liège. We wish to thank Christelle Gillissen and Renaud Beckers for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Liégeois.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dilly, S., Liégeois, JF. Interaction of clozapine and its nitrenium ion with rat D2 dopamine receptors: in vitro binding and computational study. J Comput Aided Mol Des 25, 163–169 (2011). https://doi.org/10.1007/s10822-010-9407-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9407-8

Keywords

Navigation