Skip to main content
Log in

Understanding molecular structure from molecular mechanics

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The general problem with DFT methods, and in particular with B3LYP, is that, differing from Schrödinger methods, DFT methods cannot be systematically improved with increasing basis set size, and their accuracy in particular cases is often not known. In general, molecular structures are calculated less accurately by DFT methods than by Schrödinger methods. For energies, this may or may not be true, depending upon the case. There is a general error in B3LYP calculations, because the contribution of dispersion forces is omitted. This error may be small or large, depending upon the particular case, so one must be cautious about the use of such calculated values. There is a common tendency for users to overestimate the accuracy of B3LYP and related methods.

  2. The MM4 program is available to all users from Dr. J.-H. Lii, Department of Chemistry, National Changhua University of Education, No. 1, Jin-De Road, Changhua City 50058, Taiwan, jhrobert.lii@gmail.com.

  3. Bond lengths such as these are somewhat basis set dependent for small basis sets, but the differences between such bond lengths are only slightly so for calculations of this level or higher.

  4. When MM4 is used to study structures, if we learn something useful we may wish to include it in the program. This means that when these studies are being carried out there are two versions of the program. One is the “original” version, called MM4O. The other version, after the improvements have been added, is called MM4 going forward.

References

  1. Freedman W, Kolb EW (2006) In: Fraser G (ed) The new physics—for the twenty-first century. Cambridge University Press, Cambridge, p 11

  2. Parr RG, Wang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  3. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101–194118

    Article  Google Scholar 

  4. Allinger NL (2010) Molecular structure—understanding steric and electronic effects from molecular mechanics. Wiley, New Jersey. The references given in the present article are mostly key or leading references. More detailed citations can be found in the book on specific pages: (a) p 1, 5, 42 ff; (b) p 147; (c) p 163 ff; (d) p 167 ff; (e) p 137 ff; (f) p 189 ff; (g) p 28 ff; (h) p 177 ff; (i) p 303; (j) p 185

  5. Allinger J, Allinger NL (1958) J Am Chem Soc 80:5476–5480

    Article  CAS  Google Scholar 

  6. Yoshinaga F, Tormena CF, Freitas MP, Rittner R, Abraham RJ (2002) J Chem Soc Perkin Trans 2:1494–1498

    Google Scholar 

  7. Burkert U, Allinger NL (1982) Molecular mechanics. Wiley, New York

    Google Scholar 

  8. Andrews DH (1930) Phys Rev 36:544–554

    Article  CAS  Google Scholar 

  9. Sachse H (1890) Ber 23:1363

    Google Scholar 

  10. Sachse H (1892) Z Physik Chem 10:203

    Google Scholar 

  11. Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York

    Google Scholar 

  12. Glusker JP, Trueblood KN (1985) Crystal structure analysis—a primer, 2nd edn. IUCr, Oxford Press, Oxford

    Google Scholar 

  13. Glusker JP, Domenicano A (1992) In: Domenicano A, Hargittai I (eds) Accurate molecular structures. Oxford University Press, Oxford, p 126

  14. Westheimer FH (1956) In: Newman MS (ed) Steric effects in organic chemistry. Wiley, New York, p 523

  15. Ingold CK (1953) Structure and mechanism in organic chemistry. Cornell University Press, New York, pp 403–412

    Google Scholar 

  16. Eliel EL, Allinger NL, Angyal SJ, Morrison GA (1965) Conformational analysis. Wiley, New York, p 43

    Google Scholar 

  17. Dodziuk H (1995) Modern conformational analysis: elucidating novel exciting structures. VCH, New York

    Google Scholar 

  18. Hendrickson JB (1961) J Am Chem Soc 83:4537–4547

    Article  CAS  Google Scholar 

  19. Wiberg KB (1965) J Am Chem Soc 87:1070–1078

    Article  CAS  Google Scholar 

  20. Allinger NL (1977) J Am Chem Soc 99:8127–8134

    Article  CAS  Google Scholar 

  21. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, New York

    Google Scholar 

  22. Allen LC (1990) Acc Chem Res 23:175–176

    Article  CAS  Google Scholar 

  23. Branch GEK, Calvin M (1941) The theory of organic chemistry. Prentice-Hall, Inc., New York

    Google Scholar 

  24. Bent HA (1961) Chem Rev 61:275–311

    Article  CAS  Google Scholar 

  25. Ingold CK (1953) Structure and mechanism in organic chemistry. Cornell University Press, New York, p 70 ff

    Google Scholar 

  26. McKean DC, Duncan JL, Batt L (1973) Spectrochim Acta 29A:1037–1049

    Google Scholar 

  27. McKean DC (1975) Spectrochim Acta 31A:861–870

    CAS  Google Scholar 

  28. McKean DC, Boggs JE, Schäfer L (1984) J Mol Struct 116:313–330

    Article  CAS  Google Scholar 

  29. Thomas HD, Chen K, Allinger NL (1994) J Am Chem Soc 116:5887–5897

    Article  CAS  Google Scholar 

  30. Mulliken RS (1939) J Chem Phys 7:339–352

    Article  CAS  Google Scholar 

  31. Mulliken RS, Rieke CA, Brown WG (1941) J Am Chem Soc 63:41–56

    Article  CAS  Google Scholar 

  32. Allinger NL, Chen K, Katzenellenbogen JA, Wilson SR, Anstead GM (1996) J Comput Chem 17:747–755

    Article  CAS  Google Scholar 

  33. Pross A, Radom L, Riggs NV (1980) J Am Chem Soc 102:2253–2259

    Article  CAS  Google Scholar 

  34. Allinger NL, Schäfer L, Siam K, Klimkowski VJ, Van Alsenoy C (1985) J Comput Chem 6:331–342

    Article  CAS  Google Scholar 

  35. Bohlmann F (1957) Angew Chem 69:641–642

    Article  CAS  Google Scholar 

  36. Bohlmann F (1958) Chem Ber 91:2157–2167

    Article  CAS  Google Scholar 

  37. Juaristi E, Cuevas G (1992) Tetrahedron 48:5019–5087

    Article  CAS  Google Scholar 

  38. Jeffrey GA, Taylor R (1980) J Comput Chem 1:99–109

    Article  CAS  Google Scholar 

  39. Woods RJ (1996) The application of molecular modeling techniques to the determination of oligosaccharide solution conformations. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 9. Wiley, New York, p 129

    Chapter  Google Scholar 

  40. Nørskov-Lauritsen L, Allinger NL (1984) J Comput Chem 5:326–335

    Article  Google Scholar 

  41. Lii JH, Chen KH, Durkin KA, Allinger NL (2003) J Comput Chem 24:1473–1489

    Article  CAS  Google Scholar 

  42. Newman MS (ed) (1956) Steric effects in organic chemistry. Wiley, New York

    Google Scholar 

  43. Corey EJ (1953) J Am Chem Soc 75:2301–2304

    Article  CAS  Google Scholar 

  44. Allinger NL, Allinger J, LeBel NA (1960) J Am Chem Soc 82:2926–2927

    Article  CAS  Google Scholar 

  45. Allinger NL, Blatter HM (1962) J Org Chem 27:1523–1526

    Article  CAS  Google Scholar 

  46. Lii JH, Chen KH, Johnson GP, French AD, Allinger NL (2005) Carbohydr Res 340:853–862

    Article  CAS  Google Scholar 

  47. Liljefors T, Allinger NL (1985) J Comput Chem 6:478–480

    Article  CAS  Google Scholar 

  48. Ref. [4], p 140

Download references

Acknowledgments

The author is indebted to the University of Georgia, and especially to the present and immediate past Department Head’s of Chemistry, Jon Amster and John Stickney, respectively, and also to the Franklin College of Arts and Sciences and Dean Garnett Stokes, for their continuing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman L. Allinger.

Additional information

Throughout this paper “quantum mechanical calculations”, or (QM) means MP2/6-31G++(2p, 2d), unless otherwise stated. Geometric units are in Angstroms or Degrees, and Energies are in kcal/mol unless otherwise specified. The expression MM4O is used to mean the “Original” MM4 program before inclusion of the item under discussion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allinger, N.L. Understanding molecular structure from molecular mechanics. J Comput Aided Mol Des 25, 295–316 (2011). https://doi.org/10.1007/s10822-011-9422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9422-4

Keywords

Navigation