Skip to main content
Log in

Design of a Fragment Library that maximally represents available chemical space

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Cheminformatics protocols have been developed and assessed that identify a small set of fragments which can represent the compounds in a chemical library for use in fragment-based ligand discovery. Six different methods have been implemented and tested on Input Libraries of compounds from three suppliers. The resulting Fragment Sets have been characterised on the basis of computed physico-chemical properties and their similarity to the Input Libraries. A method that iteratively identifies fragments with the maximum number of similar compounds in the Input Library (Nearest Neighbours) produces the most diverse library. This approach could increase the success of experimental ligand discovery projects, by providing fragments that can be progressed rapidly to larger compounds through access to available similar compounds (known as SAR by Catalog).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534

    Article  CAS  Google Scholar 

  2. Hajduk PJ (2006) SAR by NMR: putting the pieces together. Mol Interv 6(5):266–272. doi:10.1124/mi.6.5.8

    Article  CAS  Google Scholar 

  3. Fischer M, Hubbard RE (2009) Fragment-based ligand discovery. Mol Interv 9(1):22–30. doi:10.1124/mi.9.1.7

    Article  CAS  Google Scholar 

  4. Schulz MN, Hubbard RE (2009) Recent progress in fragment-based lead discovery. Curr Opin Pharmacol 9(5):615–621. doi:10.1016/j.coph.2009.04.009

    Article  CAS  Google Scholar 

  5. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680. doi:10.1021/jm8000373

    Article  CAS  Google Scholar 

  6. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431. doi:10.1016/S1359-6446(04)03069-7

    Article  Google Scholar 

  7. Lepre CA (2011) Practical aspects of NMR-based fragment screening. Methods Enzymol 493:219–239. doi:10.1016/B978-0-12-381274-2.00009-1

    Article  CAS  Google Scholar 

  8. Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20(4):497–507. doi:10.1016/j.sbi.2010.04.003

    Article  CAS  Google Scholar 

  9. Giannetti AM (2011) From experimental design to validated hits a comprehensive walk-through of fragment lead identification using surface plasmon resonance. Methods Enzymol 493:169–218. doi:10.1016/B978-0-12-381274-2.00008-X

    Article  CAS  Google Scholar 

  10. Kranz JK, Schalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493:277–298. doi:10.1016/B978-0-12-381274-2.00011-X

    Article  CAS  Google Scholar 

  11. Hubbard RE, Murray JB (2011) Experiences in fragment-based lead discovery. Methods Enzymol 493:509–531. doi:10.1016/B978-0-12-381274-2.00020-0

    Article  CAS  Google Scholar 

  12. Erlanson DA (2006) Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol 17(6):643–652. doi:10.1016/j.copbio.2006.10.007

    Article  CAS  Google Scholar 

  13. Barker JJ, Barker O, Courtney SM, Gardiner M, Hesterkamp T, Ichihara O, Mather O, Montalbetti CA, Muller A, Varasi M, Whittaker M, Yarnold CJ (2010) Discovery of a novel Hsp90 inhibitor by fragment linking. ChemMedChem 5(10):1697–1700. doi:10.1002/cmdc.201000219

    Article  CAS  Google Scholar 

  14. Brough PA, Barril X, Borgognoni J, Chene P, Davies NG, Davis B, Drysdale MJ, Dymock B, Eccles SA, Garcia-Echeverria C, Fromont C, Hayes A, Hubbard RE, Jordan AM, Jensen MR, Massey A, Merrett A, Padfield A, Parsons R, Radimerski T, Raynaud FI, Robertson A, Roughley SD, Schoepfer J, Simmonite H, Sharp SY, Surgenor A, Valenti M, Walls S, Webb P, Wood M, Workman P, Wright L (2009) Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem 52(15):4794–4809. doi:10.1021/jm900357y

    Article  CAS  Google Scholar 

  15. Hubbard RE (2008) Fragment approaches in structure-based drug discovery. J Synchrotron Radiat 15(Pt 3):227–230. doi:10.1107/S090904950705666X

    Article  CAS  Google Scholar 

  16. Mochalkin I, Miller JR, Narasimhan L, Thanabal V, Erdman P, Cox PB, Prasad JV, Lightle S, Huband MD, Stover CK (2009) Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem Biol 4(6):473–483. doi:10.1021/cb9000102

    Article  CAS  Google Scholar 

  17. Davies TG, Woodhead SJ, Collins I (2009) Fragment-based discovery of inhibitors of protein kinase B. Curr Top Med Chem 9(18):1705–1717

    Article  CAS  Google Scholar 

  18. Orita M, Ohno K, Warizaya M, Amano Y, Niimi T (2011) Lead generation and examples opinion regarding how to follow up hits. Methods Enzymol 493:383–419. doi:10.1016/B978-0-12-381274-2.00015-7

    Article  CAS  Google Scholar 

  19. Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE, Cheung KM, Collins I, Davies NG, Drysdale MJ, Dymock B, Eccles SA, Finch H, Fink A, Hayes A, Howes R, Hubbard RE, James K, Jordan AM, Lockie A, Martins V, Massey A, Matthews TP, McDonald E, Northfield CJ, Pearl LH, Prodromou C, Ray S, Raynaud FI, Roughley SD, Sharp SY, Surgenor A, Walmsley DL, Webb P, Wood M, Workman P, Wright L (2008) 4,5-diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem 51(2):196–218. doi:10.1021/jm701018h

    Article  CAS  Google Scholar 

  20. Crisman TJ, Bender A, Milik M, Jenkins JL, Scheiber J, Sukuru SC, Fejzo J, Hommel U, Davies JW, Glick M (2008) “Virtual fragment linking”: an approach to identify potent binders from low affinity fragment hits. J Med Chem 51(8):2481–2491. doi:10.1021/jm701314u

    Article  CAS  Google Scholar 

  21. Lau W, Withka J, Hepworth D, Magee T, Du Y, Bakken G, Miller M, Hendsch Z, Thanabal V, Kolodziej S, Xing L, Hu Q, Narasimhan L, Love R, Charlton M, Hughes S, van Hoorn W, Mills J (2011) Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics. J Comput Aided Mol Des 1–16. doi:10.1007/s10822-011-9434-0

  22. Baurin N, Aboul-Ela F, Barril X, Davis B, Drysdale M, Dymock B, Finch H, Fromont C, Richardson C, Simmonite H, Hubbard RE (2004) Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J Chem Inf Comput Sci 44(6):2157–2166. doi:10.1021/ci049806z

    CAS  Google Scholar 

  23. Hubbard RE, Chen I, Davis B (2007) Informatics and modeling challenges in fragment-based drug discovery. Curr Opin Drug Discov Devel 10(3):289–297

    CAS  Google Scholar 

  24. Chen IJ, Hubbard RE (2009) Lessons for fragment library design: analysis of output from multiple screening campaigns. J Comput Aided Mol Des. doi:10.1007/s10822-009-9280-5

  25. Blomberg N, Cosgrove D, Kenny P, Kolmodin K (2009) Design of compound libraries for fragment screening. J Comput Aided Mol Des 23(8):513–525. doi:10.1007/s10822-009-9264-5

    Article  CAS  Google Scholar 

  26. Gianti E, Sartori L (2008) Identification and selection of “privileged fragments” suitable for primary screening. J Chem Inf Model 48(11):2129–2139. doi:10.1021/ci800219h

    Article  CAS  Google Scholar 

  27. Venhorst J, Núñez S, Kruse CG (2010) Design of a high fragment efficiency library by molecular graph theory. ACS Med Chem Lett 1(9):499–503. doi:10.1021/ml100163s

    Article  CAS  Google Scholar 

  28. Tounge BA, Parker MH (2011) Designing a diverse high-quality library for crystallography-based FBDD screening. Methods Enzymol 493:3–20. doi:10.1016/B978-0-12-381274-2.00001-7

    Article  CAS  Google Scholar 

  29. Prakesch M, Denisov AY, Naim M, Gehring K, Arya P (2008) The discovery of small molecule chemical probes of Bcl-X(L) and Mcl-1. Bioorg Med Chem 16(15):7443–7449. doi:10.1016/j.bmc.2008.06.023

    Article  CAS  Google Scholar 

  30. Dalvit C, Mongelli N, Papeo G, Giordano P, Veronesi M, Moskau D, Kummerle R (2005) Sensitivity improvement in 19F NMR-based screening experiments: theoretical considerations and experimental applications. J Am Chem Soc 127(38):13380–13385. doi:10.1021/ja0542385

    Article  CAS  Google Scholar 

  31. Blaney J, Nienaber V, Burley SK (2006) Fragment-based lead discovery and optimization using X-ray crystallography, computational chemistry and high-throughput organic synthesis. In: Jahnke W, Erlanson DA (eds) Fragment-based approaches in drug discovery, Wiley, Weinheim, Germany

  32. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. doi:10.1021/ci049714+

    Article  CAS  Google Scholar 

  33. Tversky A (1977) Features of similarity. Psychol Rev 84(4):327–352. doi:10.1037/0033-295x.84.4.327

    Article  Google Scholar 

Download references

Acknowledgments

We thank Accelrys for providing access to software and Eddy Van de Water of Accelrys for specific technical support. We are grateful to Hans Briem and Judith Günther from Bayer and Steve Roughley and James Davidson of Vernalis for helpful discussions. The work was supported by a grant from the Biotechnology and Biological Sciences Research Council, JL by a fellowship from the Swedish Pharmaceutical Society and MNS was partially supported by the Wild fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Hubbard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, M.N., Landström, J., Bright, K. et al. Design of a Fragment Library that maximally represents available chemical space. J Comput Aided Mol Des 25, 611–620 (2011). https://doi.org/10.1007/s10822-011-9461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9461-x

Keywords

Navigation