Skip to main content

Advertisement

Log in

Improving molecular docking through eHiTS’ tunable scoring function

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We present three complementary approaches for score-tuning that improve docking performance in pose prediction, virtual screening and binding affinity assessment. The methodology utilizes experimental data to customize the scoring function for the system of interest considering the specific docking scenario. The tuning approach, which has been implemented as an automated utility in eHiTS, is introduced as a solution to one of the conundrums of the molecular docking paradigm, namely, the lack of a universally well performing scoring function. The accuracy of scoring functions has been shown to be generally system-dependent, and particularly lacking for binding energy and bio-activity predictions. In the proposed approach, pose and energy predictions are enhanced by adjusting the relative weights of the eHiTS energy terms to improve score-RMSD or score-affinity correlations. In a virtual screening context ligand-based similarity is used to rescale the docking score such that better enrichment factors are achieved. We discuss the algorithmic details of the methods, and demonstrate the effects of score tuning on a variety of targets, including CDK2, BACE1 and neuraminidase, as well as on the popular benchmarks—the Directory of Useful Decoys and the PDBBind database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HTS:

High throughput screening

DUD:

Directory of useful decoys

ISP:

Interaction surface point

NA:

Neuraminidase

RMSD:

Root mean square deviation

ROC:

Receiver operating characteristic

AUC:

Area under the curve

References

  1. Englebienne P, Moitessier N (2009) Docking ligands into flexible and solvated macromolecules. 4. Are popular scoring functions accurate for this class of proteins? J Chem Inf Model 49:1568–1580

    Article  CAS  Google Scholar 

  2. Wang R, Lu Y, Fang X, Wang S (2004) An extensive test of 14 scoring functions using the PDBbind refined set of 800. J Chem Inf Comput Sci 44:2114–2125

    Article  CAS  Google Scholar 

  3. McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley S, Maiorov V, Truchon JF, Cornell WD (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47:1504–1519

    Article  CAS  Google Scholar 

  4. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishof CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  CAS  Google Scholar 

  5. Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44:1035–1042

    Article  CAS  Google Scholar 

  6. Schulz-Gasch T, Stahl M (2003) Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. J Mol Model 9:47–57

    CAS  Google Scholar 

  7. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565

    Article  CAS  Google Scholar 

  8. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL III (2004) Assessing scoring functions for protein–ligand interactions. J Med Chem 47:3032–3047

    Article  CAS  Google Scholar 

  9. Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755

    Article  CAS  Google Scholar 

  10. Oda A, Tsuchida K, Takakura T, Yamaotsu N, Hirono S (2006) Comparison of consensus scoring strategies for evaluating computational models of protein–ligand complexes. J Chem Inf Model 46:380–391

    Article  CAS  Google Scholar 

  11. Cornell WD (2006) Recent evaluations of high throughput docking methods for pharmaceutical lead finding—consensus and caveats. (ed) David C. Spellmeyer. Annu Rep Comput Chem 2:297–323

    Article  CAS  Google Scholar 

  12. Jain AN (2006) Scoring functions for protein-ligand docking. J Comput Aided Mol Des 7:407–420

    CAS  Google Scholar 

  13. Muegge I, Martin YC (1999) A general and fast scoring function for protein–ligand interactions: a simplified potential approach. J Med Chem 42:791–804

    Article  CAS  Google Scholar 

  14. Gohlke H, Hendlich M, Klebe G (1999) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295:337–356

    Article  Google Scholar 

  15. Tøndel K, Anderssen E, Drabløs F (2006) Protein Alpha Shape (PAS) Dock: a new gaussian-based score function suitable for docking in homology modelled protein structures. J Comput Aided Mol Des 20:131–144

    Article  Google Scholar 

  16. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425–445

    Article  CAS  Google Scholar 

  17. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16:11–26

    Article  CAS  Google Scholar 

  18. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  Google Scholar 

  19. Rarey M, Kramer B, Langauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

  20. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW (2000) Deciphering common failures in molecular docking of ligand-protein complexes. J Comput Aided Mol Des 14:731–751

    Article  CAS  Google Scholar 

  21. Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M (2005) LigScore: a novel scoring function for predicting binding affinities. J Mol Graph Model 23:395–407

    Article  CAS  Google Scholar 

  22. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  23. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202

    Article  CAS  Google Scholar 

  24. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  25. Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comp Chem 13:505–524

    Article  CAS  Google Scholar 

  26. Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP (2007) eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 26:198–212

    Article  CAS  Google Scholar 

  27. Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP (2006) eHiTS: an innovative approach to the docking and scoring function problems. Curr Protein Pept Sci 7:421–435

    Article  CAS  Google Scholar 

  28. Fradera X, Knegtel RMA, Mestres J (2000) Similarity-driven flexible ligand docking. Proteins 40:623–636

    Article  CAS  Google Scholar 

  29. Mooij WTM, Verdonk ML (2005) General and targetes statistical potentials for protein-ligand interactions. Proteins 61:272–287

    Article  CAS  Google Scholar 

  30. Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE (2011) A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model 51:408–419

    Article  CAS  Google Scholar 

  31. Amini A, Shrimpton PJ, Muggleton SH, Sternberg MJE (2007) A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming. Proteins 69:823–831

    Article  CAS  Google Scholar 

  32. Vriend G (1996) WHAT_CHECK. [Online] Radboud University, Nijmegen Medical Centre. http://swift.cmbi.ru.nl/gv/whatcheck/. Accessed 27 April 2011

  33. Kleywegt GJ, Harris MR, Zou J, Taylor TC, Wählby A, Jones AT (2004) The Uppsala electron-density server. Acta Cryst D 60:2240–2249

    Article  Google Scholar 

  34. Moscona A (2005) Neuraminidase inhibitors for influenza. N Engl J Med 353:1363–1373

    Article  CAS  Google Scholar 

  35. Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7:155–162

    Article  Google Scholar 

  36. Reid D, Sadjad BS, Zsoldos Z, Simon A (2008) LASSO—ligand activity by surface similarity order: a new tool for ligand based virtual screening. J Comput Aided Mol Des 22:479–487

    Article  CAS  Google Scholar 

  37. Sutherland JJ (2007) Lessons in molecular recognition 2: assessing and improving cross-docking accuracy. J Chem Inf Model 47:2293–2302

    Article  CAS  Google Scholar 

  38. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801

    Article  CAS  Google Scholar 

  39. Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein–ligand complexes with known three-dimensional structures. J Med Chem 47:2977–2980

    Article  CAS  Google Scholar 

  40. Wang R, Fang X, Lu Y, Yang CY, Wang S (2005) The PDBbind database: methodologies and updates. J Med Chem 48:4111–4119

    Article  CAS  Google Scholar 

  41. Cole SL, Vassar R (2007) The Alzheimer’s disease β-secretase enzyme, BACE1. Mol Neurodegener 2:22–46

    Article  Google Scholar 

  42. Cross JB, Thompson DC, Rai BK, Baber JC, Yi Fan K, Hu Y, Humblet C (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474

    Article  CAS  Google Scholar 

  43. Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48:2534–2547

    Article  CAS  Google Scholar 

  44. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    CAS  Google Scholar 

  45. Nicholls A (2008) What do we know and when do we know it? J Comput Aided Mol Des 22:239–255

    Article  CAS  Google Scholar 

  46. Good AC, Oprea TI (2008) Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection? J Comput Aided Mol Des 22:169–178

    Article  CAS  Google Scholar 

  47. Wallach I, Lilien R (2011) Virtual decoy sets for molecular docking benchmarks. J Chem Inf Model 51:196–202

    Article  CAS  Google Scholar 

  48. Carlson HA, Dunbar JB Jr, Gestwicki JE, Stuckey J, Showalter HD, Wang S (2009) CSAR—Community Structure-Activity Resource. [Online] University of Michigan. http://www.csardock.org/. Accessed 27 April 2011

  49. Raub S, Steffen A, Kamper A, Marian CM (2008) AIScore—chemically diverse empirical scoring function employing quantum chemical binding energies of hydrogen-bonded complexes. J Chem Inf Model 48:1492–1510

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Bashir Sadjad for his diligent coding during the work on this project. We also thank Dan Harris for his application development of a previous version of the eHiTS tuning utility and Tony Cook for reviewing an earlier version of this manuscript. We acknowledge Jason Cross and coauthors for permission to reproduce data from their paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orr Ravitz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravitz, O., Zsoldos, Z. & Simon, A. Improving molecular docking through eHiTS’ tunable scoring function. J Comput Aided Mol Des 25, 1033–1051 (2011). https://doi.org/10.1007/s10822-011-9482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9482-5

Keywords

Navigation