Skip to main content
Log in

MM/GBSA and LIE estimates of host–guest affinities: dependence on charges and solvation model

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The affinities of two sets of guest–host systems were estimated using the popular end-point methods MM/GBSA (molecular-mechanics with generalised Born and surface-area solvation) and LIE (linear interaction energy). A set of six primary alcohols that bind to α-cyclodextrin (α-CD) and a set of eight guest molecules to cucurbit[8]uril (CB8) were considered. Three different charge schemes were used to obtain charges for the host and guest molecules, viz., AM1-BCC, RESP, and the recently suggested xAvESP (which average ESP charges over a number of molecular dynamics snapshots). Furthermore, both the generalised Born and Poisson–Boltzmann solvation models were used in the MM/GBSA calculations. The two solvation models perform equally well in predicting relative affinities, and hence there is no point in using the more expensive Poisson–Boltzmann model for these systems. Both the LIE and MM/GBSA estimates are shown to be robust with respect to the charge model, and therefore it is recommended to use the cheapest AM1-BCC charges. Using AM1-BCC charges, the MM/GBSA method gave a MADtr (mean absolute deviation after removal of systematic error) of 17 kJ/mol and a correlation coefficient (r 2) of 0.67 for the CB8 complexes, and a MADtr of 10 kJ/mol and an r 2 of 0.96 for the α-CD complexes. The LIE method gave a MADtr of 20 kJ/mol and an r 2 of 0.10 for the CB8 complexes, after optimisation of the non-polar scaling parameter. For the α-CD complexes, no optimisation was necessary and the method gave a MADtr of 2 kJ/mol and a r 2 of 0.96. These results indicate that both MM/GBSA and LIE are able to estimate host–guest affinities accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chipot C, Pohorille A (eds) (2007) Free Energy Calculations. Springer, New York

    Google Scholar 

  2. Shirts M, Mobley DL, Chodera JD (2007) Annu Rep Comput Chem 3:41–59

    Article  CAS  Google Scholar 

  3. Michel J, Essex JW (2010) J Comput Aided Mol Des 24:639–658

    Article  CAS  Google Scholar 

  4. Gohlke H, Klebe G (2002) Angew Chem Int 41:2644–2676

    Article  CAS  Google Scholar 

  5. Moghaddam S, Inoue Y, Gilson MK (2009) J Am Chem Soc 131:4012–4021

    Article  CAS  Google Scholar 

  6. Mikulskis P, Genheden S, Sandberg L, Olsen L, Ryde U (2011) J Comput Aided Mol Des, submitted

  7. Srinivasan J, Cheatham TE III, Cieplak P, Kollman PA, Case DA (1998) J Am Chem Soc 37:9401–9409

    Article  Google Scholar 

  8. Kollman PA, Massova I, Reyes I, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, CheathamIII TE (2000) Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  9. Åqvist J, Medina C, Samuelsson J-E (1994) Protein Eng 7:385–391

    Article  Google Scholar 

  10. Hansson T, Marelius J, Åqvist J (1998) J Comput-Aided Mol Design 12:27–35

    Article  CAS  Google Scholar 

  11. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  12. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  13. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  14. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) J Comput Chem 25:1656–1676

    Article  CAS  Google Scholar 

  15. Wang JM, Wolf RM, Caldwell KW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  16. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2009) J Comput Chem 31:671–690

    Google Scholar 

  17. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1997) J Phys Chem 97:10269–10280

    Article  Google Scholar 

  18. Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23:1623–1641

    Article  CAS  Google Scholar 

  19. Söderhjelm P, Ryde U (2009) J Comput Chem 30:750–760

    Article  Google Scholar 

  20. Genheden S, Söderhjelm P, Ryde U (2011) Int J Quant Chem. doi:10.1002/qua.22967

  21. Wall ID, Leach AR, Salt DW (1999) J Med Chem 42:5142–5152

    Article  CAS  Google Scholar 

  22. Almlöf M, Brandsdal BO, Åqvist J (2004) J Comput Chem 25:1242–1254

    Article  Google Scholar 

  23. Lee MC, Yang R, Duan Y (2005) J Mol Model 12:101–110

    Article  CAS  Google Scholar 

  24. Genheden S, Luchko T, Gusarov S, Kovalenko A, Ryde U (2010) J Phys Chem B 114:8505–8516

    Article  CAS  Google Scholar 

  25. Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) J Am Chem Soc 127:15959–15967

    Article  CAS  Google Scholar 

  26. Puliti R, Mattia CA, Paduano L (1998) Carbohydr Res 310:1–8

    Article  CAS  Google Scholar 

  27. Linder K, Saenger W (1982) Carbohydr Res 99:103–115

    Article  Google Scholar 

  28. Jeon WS, Kim H-J, Lee C, Kim K (2002) Chem Commun 1828–1929

  29. Matsui Y, Mochida K (1979) Bull Chem Soc Jpn 52:2808–2814

    Article  CAS  Google Scholar 

  30. Choi Y, Jung S (2004) Carbohydr Res 339:1961–1966

    Article  CAS  Google Scholar 

  31. El-Barghouthi MI, Assaf KI, Rawashdeh AMM (2010) J Chem Theory Comput 6:984–992

    Article  CAS  Google Scholar 

  32. El-Barghouthi MI, Jaime C, Al-Sakhen NA, Issa AA, Abdoh AA, Al Omari MM, Badwan AA, Zughul MB (2008) J Mol Struct: Theochem 853:45–52

    Article  CAS  Google Scholar 

  33. ChemAxon, Marvin version 5.6 (2011)

  34. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvary I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V (2008) Kollman, P A Amber 10. University of California, San Francisco

    Google Scholar 

  35. Besler BH, Merz KM, Kollman PA (1990) J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, 03 Revision. Gaussian Inc, Wallingford

    Google Scholar 

  37. Jorgensen WL, Chandrasekhar J, Madura JD, Impley RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  38. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  39. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  40. Wu X, Brooks BR (2003) Chem Phys Lett 381:512–518

    Article  CAS  Google Scholar 

  41. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  42. Genheden S, Ryde U (2011) J Comput Chem 32:187–195

    Article  CAS  Google Scholar 

  43. Onufriev A, Bashford D, Case DA (2004) Proteins 55:383–394

    Article  CAS  Google Scholar 

  44. Kuhn B, Kollman PA (2000) J Med Chem 43:3786–3791

    Article  CAS  Google Scholar 

  45. Åqvist J, Hansson T (1996) J Phys Chem 100:9512–9521

    Article  Google Scholar 

  46. Pearlman DA, Chareifson PS (2001) J Med Chem 44:3417–3423

    Article  CAS  Google Scholar 

  47. Genheden S, Ryde U (2010) J Comput Chem 31:837–846

    CAS  Google Scholar 

  48. Singh N, Warshel A (2010) Proteins 78:1705–1723

    CAS  Google Scholar 

  49. Hayes JM, Skamnaki VT, Archontis G, Lamprakis C, Sarrou J, Bischler N, Skaltsounis A-L, Zographos SE, Oikonomakos NH (2011) Proteins 79:704–719

    Article  Google Scholar 

  50. Hou T, Wang J, Li Y, Wang W (2011) J Chem Inf Model 51:69–82

    Article  CAS  Google Scholar 

  51. Shivakumar D, Deng Y, Roux B (2009) J Chem Theory Comput 5:919–930

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation has been supported by grants from the Research school in pharmaceutical science. It has also been supported by computer resources of LUNARC at Lund University (project SNIC001-10-225), NSC at Linköping University and HPC2 N at Umeå University (project SNIC014-10-24). Prof. Ulf Ryde and Svante Hedström are acknowledged for discussions and critical proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Genheden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genheden, S. MM/GBSA and LIE estimates of host–guest affinities: dependence on charges and solvation model. J Comput Aided Mol Des 25, 1085–1093 (2011). https://doi.org/10.1007/s10822-011-9486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9486-1

Keywords

Navigation