Skip to main content
Log in

Druggability of methyl-lysine binding sites

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798–802

    Article  CAS  Google Scholar 

  2. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  Google Scholar 

  3. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  Google Scholar 

  4. Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28:1069–1078

    Article  CAS  Google Scholar 

  5. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068

    Article  CAS  Google Scholar 

  6. Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15:3958–3969

    Article  CAS  Google Scholar 

  7. Daigle SR et al (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20:53–65

    Article  CAS  Google Scholar 

  8. Vedadi M et al (2011) A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol 7:566–574

    Article  CAS  Google Scholar 

  9. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Natl Rev Mol Cell Biol 8:983–994

    Article  CAS  Google Scholar 

  10. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    Article  CAS  Google Scholar 

  11. Vermeulen M et al (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142:967–980

    Article  CAS  Google Scholar 

  12. Sanchez R, Zhou MM (2009) The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel 12:659–665

    CAS  Google Scholar 

  13. Haynes SR et al (1992) The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res 20:2603

    Article  CAS  Google Scholar 

  14. Musselman CA, Kutateladze TG (2009) PHD fingers: epigenetic effectors and potential drug targets. Mol Interv 9:314–323

    Article  CAS  Google Scholar 

  15. Baker LA, Allis CD, Wang GG (2008) PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 647:3–12

    Article  CAS  Google Scholar 

  16. Adams-Cioaba MA, Min J (2009) Structure and function of histone methylation binding proteins. Biochem Cell Biol 87:93–105

    Article  CAS  Google Scholar 

  17. Kim J et al (2006) Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep 7:397–403

    CAS  Google Scholar 

  18. Maurer-Stroh S et al (2003) The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28:69–74

    Article  CAS  Google Scholar 

  19. Filippakopoulos P et al (2010) Selective inhibition of BET bromodomains. Nature 468:1067–1073

    Article  CAS  Google Scholar 

  20. Nicodeme E et al (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468:1119–1123

    Article  CAS  Google Scholar 

  21. Herold JM et al (2011) Small-molecule ligands of methyl-lysine binding proteins. J Med Chem 54:2504–2511

    Article  CAS  Google Scholar 

  22. Wang M et al (2010) Structural genomics of histone tail recognition. Bioinformatics 26:2629–2630

    Article  CAS  Google Scholar 

  23. Yap KL, Zhou MM (2010) Keeping it in the family: diverse histone recognition by conserved structural folds. Crit Rev Biochem Mol Biol 45:488–505

    Article  CAS  Google Scholar 

  24. Min J et al (2007) L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol 14:1229–1230

    Article  CAS  Google Scholar 

  25. Guo Y et al (2009) Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res 37:2204–2210

    Article  CAS  Google Scholar 

  26. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389

    Article  CAS  Google Scholar 

  27. Schmidtke P, Souaille C, Estienne F, Baurin N, Kroemer RT (2010) Large-scale comparison of four binding site detection algorithms. J Chem Inf Model 50:2191–2200

    Article  CAS  Google Scholar 

  28. Kaustov L et al (2010) Recognition and specificity determinants of the human cbx chromodomains. J Biol Chem 286:521–529

    Article  Google Scholar 

  29. Wang Z et al (2010) Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 141:1183–1194

    Article  CAS  Google Scholar 

  30. Collins RE et al (2008) The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat Struct Mol Biol 15:245–250

    Article  CAS  Google Scholar 

  31. Horton JR et al (2010) Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol 17:38–43

    Article  CAS  Google Scholar 

  32. Palacios A et al (2008) Molecular basis of histone H3K4me3 recognition by ING4. J Biol Chem 283:15956–15964

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Structural Genomics Consortium is a registered charity (number 1097737) that receives funds from Canadian Institutes for Health Research, Canadian Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Eli Lilly, Pfizer, Novartis Research Foundation, Life Technologies, Ontario Innovation Trust, Ontario Ministry for Research and Innovation, and Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schapira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 550 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiago, C., Nguyen, K. & Schapira, M. Druggability of methyl-lysine binding sites. J Comput Aided Mol Des 25, 1171–1178 (2011). https://doi.org/10.1007/s10822-011-9505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9505-2

Keywords

Navigation