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Abstract
Relative free energy calculations based on molecular dynamics simulations were combined with
available experimental binding free energies to predict unknown binding affinities of acyclic
Cucurbituril complexes in the blind SAMPL3 competition. The predictions showed good
agreement with experimental results, yielding root mean square errors of about 2.6 kcal/mol for
seven host-guest systems. However, the standard deviations found in our simulations were ranging
up to 2.4 kcal/mol, which indicates the need for better sampling. We compare the performance of
three different approaches: Bennett’s Acceptance Ratio Method and Thermodynamic Integration
based on both the trapezoidal and Simpson’s rule. Surprisingly, both Bennett’s Acceptance Ratio
Method and Thermodynamic Integration with trapezoidal rule lead to the same root mean square
error. We also evaluate the influence of the protonation states of the amine groups of the guest
molecules, showing that the deprotonated forms exhibit a poorer correspondence to experimental
results with a root mean square error of 5.2 kcal/mol. In addition, we demonstrate that a decrease
of the buffer concentration by about 20mM in our simulations can raise the root mean square error
to 3.8 kcal/mol.
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1 Introduction
So-called “free energy simulations” are considered among the most accurate and general
methodologies in the field of computational chemistry. They provide means to study diverse
processes such as the binding affinities of ligands[25, 21], enzymatic reactions[11], the
solvation of organic molecules[20], as well as the effect of point mutations[26].

However, most applications of free energy simulations do not provide reliable data on the
accuracy of the method, since either a.) there is no reference data for an assessment of its
quality or b.) the free energy calculations were conducted after the experimental reference
results became available. In the latter case, the reference results lead to a selection process,
where simulations with a high agreement with experiment become published, while
simulations with a poor agreement will not be disclosed. Since only successes are reported
this way, an unrealistically positive picture is presented.

Such forms of bias can be avoided by employing blind studies, where the reference results
are not known a priori. In computational chemistry, the SAMPL blind challenges have been
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established during the past years for assessing methods for the prediction of free
energies[24, 8, 7]. Those challenges supplied data on the expected accuracies of current
force fields, in particular with respect to the solute-water interactions. In the form of the
hydrophobic effect, those interactions play a vital role in all biological processes. In
SAMPL0 and SAMPL1, the root mean square errors (RMSE) of free energy calculations
based on molecular dynamics simulations with explicit solvent ranged between 1.3[24] and
3.5 kcal/mol[8, 19], which gives a good picture of the errors that can be expected from this
method for small systems. E.g., the same approach yielded a RMSE of 2.8 kcal/mol when
predicting the solvation free energies of 23 small organic compounds in the SAMPL2
competition[13].

In SAMPL3, the prediction of binding affinities of host-guest systems (ΔGbind) was added
to the list of challenges. These systems include Cucurbituril molecular containers that are
able to selectively bind ligands with cationic groups. Through their binding-pocket-like
structure, host-guest systems exhibit many of the features of protein-ligand complexes,
while still being small enough to be computationally tractable - no global conformational
changes or unfolding events can occur during the simulation. This relative simplicity and
robustness makes them a very useful benchmark system for computational methods. For
example, Moghaddam et al. employed M2 free energy calculations to design guest systems
with ultrahigh affinity to Cucurbit[7]uril[22], obtaining RMSE from experimental results
between 2.7 and 4.6 kcal/mol for all compounds included in their study.

In a recent publication[17], Ma et al. described the synthesis of the acyclic Cucurbituril
congener employed in the SAMPL3 challenge. They also tested its function as a host to a
structurally diverse set of ammonium ions. This study included experimentally determined
binding constants between ~ 105 and 109 M−1 for 26 guest molecules. In our work, we
employ these experimental binding affinities as a starting point of our binding affinity

predictions. I.e., our absolute binding free energy predictions ( ) are a combination of

the experimentally derived absolute binding free energy of a reference molecule ( ) as
given in Ref. [17] and computed relative binding free energies to the target molecules of the
SAMPL3 competition (ΔΔGbind)

(1)

The reference molecules[17] and the corresponding targets of the SAMPL3 competition are
shown on the left and the right side of Fig. 1. By employing relative (alchemical) free
energy calculations rather than absolute calculations, the mutations of the system are
relatively mild, i.e. most interactions within the complex are only slightly affected by the
transformation. Through error compensation, we expect this approach to reduce of the errors
due to the imperfections of the force field[18].

To calculate such relative free energy differences, several free energy methods are available,
whereof Bennett’s acceptance ratio method (BAR)[1] and thermodynamic integration (TI)
[12] are among the most widely used (for a short description of the two methods, see the
Methods section). While BAR is generally considered more efficient than TI, a recent
publication by Bruckner and Boresch suggests that TI can be as efficient as BAR[4] granted
that a good numerical quadrature scheme is employed. If the available simulation lengths are
short, TI sometimes even outperforms BAR in terms of efficiency. We, therefore, decided to
employ both BAR and TI for the analysis of the trajectories, using both the trapezoidal (TI-
TR) and Simpson’s rule (TI-SI) for the numerical quadrature step in TI. This allows us to
compare the relative competitiveness of those three methods.
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The remainder of this paper is organized as follows. First, we outline the methods employed
in more detail. We then present the results for BAR, TI-TR and TI-SI and assess their
accuracy. Finally, we conclude with a short discussion on the influence of parameters such
as the protonation state of the guest molecule and the buffer concentration on the binding
free energy results.

2 Methods
We calculated the relative binding free energies of the seven guest molecules in the
SAMPL3 challenge (labeled 1–7 in Fig. 1, numbers shown in bold). The relative free energy
calculations were started from reference molecules of known binding affinity as published
by Ma et al.[17] (numbers in italics). In particular, structures 26, 19 and 11 from Ref. [17]
were employed (in order of appearance from top to bottom on the left side of Fig. 1). Their
corresponding absolute binding free energies were reported to be −7.0, −8.0 and −11.3 kcal/
mol. Reference molecule 26 was employed for molecules 1,3,4,5 and 7. We assumed that
those molecules contain only a single protonated amine group. For the other two reference
molecules 19 and 11 and their corresponding target molecules 2 and 6 we assumed that they
contain two protonated amine groups. In our simulations, also the four carboxyl groups in
the host molecule were deprotonated. Binding affinities of the two stereoisomers of guest
molecule 1 were calculated separately (named 1S and 1R). The presented data for 1 are the
average of the 1S and 1R results. All free energy calculations were conducted with
CHARMM[2, 3], using the PERT module of CHARMM and the CHARMM General Force
Field for organic molecules (CGenFF)[29], program version 0.9.1 beta, as provided on
www.paramchem.org.

2.1 Outline of the free energy methods
TI[12], involves numerical quadrature to determine the free energy difference between two
states 0 and 1. Between 0 and 1, several intermediate states can be generated by mixing the
respective potential energy functions U. The mixing ratio between U0 for state 0 and U1 for
state 1 is given by the factor λ (e.g.: U(λ) = λU1 + (1 − λ)U0). In TI, λ is considered as a
continuous variable that can be used for differentiation or integration. Using integration, the
free energy difference between 0 and 1 can be regarded as

(2)

which leads to the equation for TI

(3)

In practice, this integral is evaluated by conducting several simulations at discrete values of

λ to evaluate  and then employing numerical quadrature to approximate the
integral. This can be done by using the trapezoidal rule or numerical quadrature schemes of
higher order such as Simpson’s rule[5].

BAR[1], on the other hand, requires two simulations. At each end point of the free energy
calculation the potential energy differences are evaluated, using

(4)
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where f denotes the Fermi function. Indexes 0 and 1 indicate that the ensemble averages are
calculated over all coordinate frames generated for the initial and final state. Bennett showed
that C can found through an iterative procedure. The BAR equation can also be derived
using maximum likelihood techniques[27].

2.2 Computation of relative binding affinities

Each relative binding free energy ( ) was calculated with the standard
thermodynamic cycle, which includes two kinds of calculations: 1.) Transforming the

reference molecule to the target molecule in solution ( ) and 2.) conducting the

same transformation while bound to the host ( ). Thus,

(5)

In all  simulations 1492 TIP3P water molecules [10, 23] were
present. Na+ or Cl− ions were added to neutralize the total charge of the system and an
additional NaCl pair was included to improve the sampling and obtain an ionic strength
similar to the experimental conditions. The simulation box was a truncated octahedron. The
side length L of the cube from which the octahedron was generated was originally L = 40.0
Å. However, we used constant pressure during free energy simulations. Integration of the
equations of motion was carried out with the velocity-Verlet algorithm as implemented in
the TPCNTRL module of CHARMM[15]; the time step was 2 fs. The temperature was
maintained at about 300 K using two separate Nosé-Hoover thermostats[9] for solute and
solvent. SHAKE[28] was used to keep the water geometry rigid. Lennard-Jones interactions
were switched off between 10–12 Å, while electrostatic interactions were computed with the
Particle Mesh Ewald method [6]. Each host-guest system was equilibrated for 200 ps before
production.

All alchemical mutations were split into 11–12 λ intermediate steps, using soft core Lennard
Jones and electrostatic interactions. 12λ points were used for the BAR and TI-TR results
(λ= 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). Since Simpson’s rule requires an
odd number of equally-spaced data points for numerical quadrature, the TI-SI results are
based on 11λ points (λ= 0.0, 0.1 … 1.0). Each λ point was simulated for 3 ns and all
simulations were repeated four times, starting from different initial random velocities, to
allow the calculation of standard deviations. Thus, each result submitted to SAMPL3 was
based on a total simulation time of about 288 ns, leading to a combined computational effort
equivalent to 2.3 µs for all predictions taken together.

2.3 Free energy simulations with different protonation states
To determine the influence of the protonation state of the guest on the binding affinity result

( ), additional simulations were conducted after the deadline for the SAMPL3
competition. For this purpose, the protonated and deprotonated state of all reference and
target molecules were simulated with implicit solvent to determine the free energy
differences. Again, a thermodynamic cycle was employed, using a.) free energy simulations

between the protonated and deprotonated state in water for the reference ( ), as

well as the target ( ) and b.) the corresponding simulations while bound to

the host molecule ( ), leading to
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(6)

(7)

so that

(8)

The free energy differences were calculated using Langevin dynamics simulations with a
friction coefficient of 5 ps−1 on all heavy atoms. Random forces were applied according to
the target temperature of 300 K. To justify a time step of 1.5 ps, hydrogen masses were set
to 10 amu. The effect of the solvent was modeled with GBMV[16]. In previous studies
GBMV showed a very good agreement with explicit solvent results for several relative
solvation free energies (RMSE=0.5 kcal/mol[14]), therefore the expected error due to the
implicit solvent model can be assumed to be small. Free energy differences were determined
with BAR, using two steps: one for changing the charges and the other step for changing the
atom types. For guest molecule 6 there was not sufficient phase space overlap to obtain
converged results - therefore, no data is shown for this guest. The simulation length at each
endpoint was 15 ns, the first 1.5 ns of which were discarded as equilibration. Each
simulation was repeated thrice with different random seeds.

2.4 Simulations with different buffer concentrations
To determine the influence of the buffer concentration on the binding affinity result

( ), the additional NaCl pairs present in the binding affinity calculations
(discussed in Section 2.2) were removed alchemically from the host-guest systems 2, 4 and
6. Again, a thermodynamic cycle was employed, using free energy simulations between the
systems that include the additional NaCl pair and systems where the electrostatic and
Lennard-Jones interactions of that pair are turned off. This was done a.) in aqueous solution

for the reference molecule ( ), as well as the target molecule

( ) and b.) the corresponding simulations while bound to the host molecule

( ), leading to

(9)

(10)

so that

(11)

The corresponding free energy simulations were calculated using the same simulation setup
as described in subsection 2.2. The electrostatic and Lennard-Jones interactions of the Na+

and Cl− ions were turned off in 12λ steps (λ= 0.0, 0.1, … , 0.9, 0.95, 1.0), using soft cores.
Each λ point was simulated for 2 ns. Free energy differences were calculated using TI and
the trapezoidal rule.
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3 Results and Discussion
The results for the absolute binding free energies (ΔGbind) of the seven host-guest systems
are shown in Table 1. Three free energy methods were employed: BAR (second column),
TI-TR (third column) and TI-SI (fourth column). The ± sign represents the corresponding
standard deviations, which were calculated from four repetitions of each calculation.
Generally, the standard deviations are very high, ranging between 0.5 and 1.3 kcal/mol for
BAR, 0.4 − 1.9 kcal/mol for TI-TR and rising up to 0.6 − 2.4 kcal/mol for TI-SI. However,
the average standard deviations were similar for all three methods (0.8 for BAR and TI-TR,
1.0 for TI-SI). Since the standard deviations reflect the quality of the sampling, this indicates
that the binding free energy results are not converged. Significantly longer trajectories
would have been required to achieve what we consider adequate standard deviations of
about 0.3 kcal/mol.

The experimental results for the binding free energies are presented in the rightmost column
of Table 1. They form the basis for the root mean square errors (RMSE) presented in the last
line for each computational method. The RMSE serve as a measure for the accuracy of each
method. In terms of RMSE, the accuracies of BAR and TI-TR are equal (2.6 kcal/mol),
while the errors of TI-SI are higher (3.2 kcal/mol). All three results fall into the same range
of RMSE as experienced during past SAMPL competitions for the hydration free energies of
organic molecules (between 1.3[24] and 3.5 kcal/mol[8, 19]). This demonstrates that
solvation free energies are a good benchmark system for free energy calculations of even
larger molecular complexes.

When comparing the accuracy of the three methods, the relatively weak performance of TI-
SI might come as a surprise, considering that recent studies[5] demonstrated that TI, in
connection with Simpson’s rule (or other higher-order numerical integration schemes), is by
far superior to the simple trapezoidal rule. However, better quadrature methods can enhance
the efficiency of TI only if the shape of the integrand ∂U/∂λ is well-behaved and the values
of ∂U/∂λ are converged. In Fig. 3 we show a typical ∂U/∂λ plot from our calculations. The
four lines represent four different repetitions of the simulation. As can be seen, the
aforementioned conditions are not met: Both the uncertainties of ∂U/∂λ (as illustrated by
differences of the four repetitions) as well as the changes of ∂U/∂λ (a steep decrease
between λ = 0.0 and λ = 0.1) are very high. In such cases, it is more efficient to introduce
additional λ-points in the problematic regions of the ∂U/∂λ plot and to run longer
simulations rather than employing high-order numerical quadrature. This is reflected by the
difference of the RMSE of TI-TR and TI-SI (2.6 versus 3.2 kcal/mol).

It is interesting to observe that BAR and TI-TR produce the same RMSE in two different
ways (see Fig. 3). With the notable exception of 2, most TI-TR predictions are consistently
off from the experimental results by about 2 to 3 kcal/mol (lying outside the orange lines in
Fig. 3). Those deviations can probably be attributed to the problems of numerical quadrature
as illustrated in Fig. 3. For BAR, the predictions can be divided into two groups: the outliers
1,4 and 5, which exhibit a RMSE of 3.7 kcal/mol and the group of 2,3,6,7 with a relatively
low RMSE of 1.4 kcal/mol. Since there are no consistent chemical patterns that distinguish
the two groups, the errors are not likely to arise simply from imperfections of the force-field.
We assume that the cause of this effect is probably a mixture of fortuitous cancellation of
errors and insufficient sampling.

Another aspect of the accuracy of the binding free energy simulations was the selection of
protonation states of both the guest molecules and the host. Since the protonation states in
our simulations were picked based on similarities to molecules of known pKa’s in chemical
textbooks, we were interested to see what would have happened if we had chosen the
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deprotonated state for our simulations. For that purpose, additional free energy calculations
were conducted after the deadline for SAMPL3 to determine the change of binding affinity

after deprotonation of the guest molecules ( ). The results for  (second
column) as well as the corresponding absolute binding affinities (third column) are shown in
Table 2. In addition, also the standard deviations due to error propagation (after the ± sign)
and the RMSE of the resulting absolute binding free energies (last row) are presented.

When taken as a whole, the binding affinity results of the deprotonated guest molecules
deviate significantly from the experimental results, as indicated by the RMSE of 5.2 kcal/
mol. Compared with the results of the protonated forms from Table 1, only guest molecule 5
lies closer to the experimental value of −6.1 kcal/mol than its corresponding protonated form
(−7.7 kcal/mol instead of 9.3 kcal/mol). This indicates that the guest molecules are

protonated in their bound form. Generally, the standard deviations for  are very
high, ranging between 1.2 and 3.3 kcal/mol. Therefore, most of the results are not
statistically significant (i.e., distinguishable from zero). This can be attributed to two effects
a.) improper sampling and b.) the detachment of the guest molecule from the host in some
simulations. The latter problem could have been avoided by employing restraints to restrict
their sampling to the binding pocket.

In their experimental paper[17], Ma et al. presented data on the dependence of the binding
affinity on the buffer concentration. They hypothesized that the cations in solution bind to
the host molecule and thereby reduce the affinity toward the guests. This effect was
demonstrated for one guest molecule by changing the sodium phosphate buffer
concentration from 24.5 mM to 57.2 mM, which caused the binding affinity to change by
about 0.4 kcal/mol. Since in our binding free energy simulations sodium chloride was
employed instead of sodium phosphate, we had increased the buffer concentration relative to
the experimental conditions in order to obtain about the same ionic strength (i.e. 40 − 50mM
instead of 20mM). To check whether our binding affinity results were affected by the buffer
concentration employed in our simulations, we conducted additional simulations after the
deadline for the SAMPL3 competition. In those simulations, we lowered the buffer
concentration to about 20−30mM by alchemically removing one ion pair from our
simulations. The changes of the binding free energy due to this change of buffer

concentration ( ) are shown in Table 3.

The  results fluctuate between −0.7 and +5.4 kcal/mol. This finding is surprising,

given that the buffer competitively binds to the host molecule, and, therefore, 
should be approximately the same for all binding free energy predictions. The high standard
deviations of up to 3.6 kcal/mol indicate that the simulations are not converged, i.e. the
sampling of the ions was not complete. Thus, our free energy results will strongly depend on
the initial positions of the ions. Only the results for 4 and 7 can be considered statistically
significant. The absolute binding affinity of 4 lies at −3.9 kcal/mol, which is significantly
closer to the experimental values of −4.2 kcal/mol than in the original case. On the other
hand the correspondence of 7 with experimental results is lowered. In total, the RMSE of all

 is higher than in our original predictions (3.8 versus 2.6 kcal/mol),
demonstrating that the use of the right ionic strength is more important than reproducing the
buffer concentration.
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4 Conclusions
The binding free energies of seven host-guest systems were predicted using relative free
energy calculations. For the analysis of the trajectories, three different methods were
employed: BAR using 12 λ points, TI with the trapezoidal rule using 12 λ-points and TI
with Simpson’s rule using 11 λ-points. While both BAR and TI with 12 λ-points resulted in
a RMSE of 2.6 kcal/mol, the corresponding TI result with 11 λ-points yielded a RMSE of
3.2 kcal/mol. We demonstrated that this difference can be traced back to the shape and the
uncertainties of the ∂U/∂λ integrand.

Overall, our data shows that binding affinities of host-guest systems can be determined with
about the same accuracy as solvation free energies of relatively small organic molecules in
the previous SAMPL challenges (i.e., with a root mean square error of about 2–3 kcal/mol).
This demonstrates that solvation free energies are indeed a valuable benchmark system.
Given that up to six groups of unknown protonation state and in very close proximity are
involved in the binding process of the host-guest systems employed here, the target of the
predictions is very challenging. This is reflected by the large differences between the
simulations with protonated and unprotonated guest molecules: Simulations of the
unprotonated state exhibited a significantly lower correspondence to experimental results
(RMSE of 5.2 kcal/mol). However, also changing the buffer concentration by 20 mM can
increase the RMSE to 3.8 kcal/mol.

A striking feature of all results are the very high standard deviations, which range between
0.4 and 2.4 kcal/mol (or, relative to the absolute results, between 5 and 120%). About 30%
of the RMSE can be explained in terms those uncertainties. Considering that the simulation
lengths were very short (3 ns for each λ point), these standard deviations only signify the
uncertainties due to the sampling of a local energy minimum. This means that our free
energy results are far from converged and, therefore, should be taken with a grain of salt.
Instead of regarding our results as an absolute measure of the quality of current force fields,
they should rather be seen as an indicator where more methodological development in the
field of free energy simulations will be required. We believe that there is still significant
room for improvement, especially in the area of sampling and the handling of groups with
unknown protonation states. We, therefore, look forward to future free energy prediction
challenges.
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Fig. 1.
Chemical structures of the guest molecules. Reference molecules of known binding affinity
are shown on the left side of the arrows and the corresponding target molecules of the free
energy calculations for the SAMPL3 challenge are shown on the right side.
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Fig. 2.
Illustration of the difficulties encountered by TI: Plot of ∂U/∂λ as a function of λ for the
free energy difference between 26 and 3 in complex with the host. The four different colors
indicate the results of four different simulations. Between λ = 0.0 and λ = 0.1, the curves
are very steep and the uncertainties of ∂U/∂λ are very high. This causes large errors in the
numerical quadrature step of TI.
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Fig. 3.
Comparison of the BAR and TI-TR results for 12 λ-points. The experimental binding free
energies of the guest molecules (x-axis) are plotted versus the computational results (y-axis).
The TI-TR results and error bars are shown in red, while each BAR result and its
corresponding error bar are marked by a blue X and a dashed line. The line of ideal
correspondence between experiments and predictions is shown in green, while the range
within 2 kcal from the experimental results is indicated by two orange lines.
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Table 1

Computed absolute binding free energies ΔGbind and their corresponding standard deviations for the seven
guest molecules of the SAMPL3 challenge. Three different methods were used: Bennett’s acceptance ratio
method (BAR) with 12 λ points and thermodynamic integration with the trapezoidal rule and 12 λ points (TI-
TR), as well as Simpson’s rule with 11 λ points (TI-SI). The experimental results (Exp.) of the binding free
energies are shown on the right side in bold. The root mean square errors (RMSE) of the computational results
are shown in the last row in bold. All free energy differences are in kcal/mol.

Guest Exp.

1 −9.1 ± 0.9 −8.5 ± 0.4 −7.5 ± 0.7 −5.8

2 −7.3 ± 0.5 −7.4 ± 0.6 −6.8 ± 0.6 −7.1

3 −5.3 ± 1.3 −3.8 ± 1.9 −2.0 ± 2.4 −6.8

4 −8.6 ± 0.7 −7.3 ± 1.3 −8.7 ± 1.4 −4.2

5 −9.3 ± 0.8 −9.0 ± 0.7 −6.6 ± 0.6 −6.1

6 −9.0 ± 1.0 −8.7 ± 1.2 −7.1 ± 1.0 −10.7

7 −6.4 ± 0.7 −5.0 ± 0.9 −4.5 ± 1.0 −7.9

RMSE 2.6 2.6 3.2
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Table 2

Effect of employing the deprotonated form of the guest molecules on the binding affinity ( ). While
in the second column the changes of the binding free energies due to deprotonation (plus the associated
standard deviations) are shown, the resulting absolute binding free energies of the deprotonated guests and the
standard deviations due to error propagation are shown in the rightmost column. The corresponding RMSE for
the deprotonated guests is presented in the last row. All free energy differences are in kcal/mol.

Guest

1 0.0 ± 3.2 −9.1 ± 3.2

2 6.5 ± 1.2 −0.8 ± 1.3

3 3.8 ± 3.3 −1.5 ± 3.6

4 −2.5 ± 2.6 −11.1 ± 2.7

5 1.6 ± 2.7 −7.7 ± 2.8

7 0.6 ± 2.7 −5.8 ± 2.8

RMSE 5.2
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Table 3

Effect of the buffer concentration on the binding affinity ( ) as a result from alchemically lowering
the sodium chloride concentration in our simulations by about 10 – 20mM. The resulting absolute binding free
energies of the systems with a concentration of 20 – 30mM and the standard deviations due to error
propagation are shown in the rightmost column. The corresponding RMSE for the deprotonated guests is
presented in the last row. All free energy differences are in kcal/mol.

Guest

1 −0.7 ± 3.1 −9.8 ± 3.2

2 0.9 ± 1.7 −6.4 ± 1.8

3 2.4 ± 2.7 −2.9 ± 3.0

4 4.7 ± 2.2 −3.9 ± 2.3

5 −0.7 ± 1.6 −10.0 ± 1.8

6 1.1 ± 3.6 −7.9 ± 3.7

7 5.3 ± 3.0 −1.1 ± 3.1

RMSE 3.8
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