Skip to main content
Log in

Understanding the mechanism of cellulose dissolution in 1-butyl-3-methylimidazolium chloride ionic liquid via quantum chemistry calculations and molecular dynamics simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

While N,N′-dialkylimidazolium ionic liquids (ILs) have been well-established as effective solvents for dissolution and processing of cellulose, the detailed mechanism at the molecular level still remains unclear. In this work, we present a combined quantum chemistry and molecular dynamics simulation study on how the ILs dissolve cellulose. On the basis of calculations on 1-butyl-3-methylimidazolium chloride, one of the most effective ILs dissolving cellulose, we further studied the molecular behavior of cellulose models (i.e. cellulose oligomers with degrees of polymerization n = 2, 4, and 6) in the IL, including the structural features and hydrogen bonding patterns. The collected data indicate that both chloride anions and imidazolium cations of the IL interact with the oligomer via hydrogen bonds. However, the anions occupy the first coordination shell of the oligomer, and the strength and number of hydrogen bonds and the interaction energy between anions and the oligomer are much larger than those between cations and the oligomer. It is observed that the intramolecular hydrogen bond in the oligomer is broken under the combined effect of anions and cations. The present results emphasize that the chloride anions play a critically important role and the imidazolium cations also present a remarkable contribution in the cellulose dissolution. This point of view is different from previous one that only underlines the importance of the chloride anions in the cellulose dissolution. The present results improve our understanding for the cellulose dissolution in imidazolium chloride ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Science 315:804–807

    Article  CAS  Google Scholar 

  2. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484–489

    Article  CAS  Google Scholar 

  3. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) Nat Biotechnol 26:169–172

    Article  CAS  Google Scholar 

  4. Zaldivar J, Nielsen J, Olsson L (2001) Appl Microbiol Biotechnol 56:17–34

    Article  CAS  Google Scholar 

  5. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Science 251:1318–1323

    Article  CAS  Google Scholar 

  6. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  7. Heinze T, Liebert T (2001) Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  8. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  9. Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo ML (2004) Biomacromolecules 5:266–268

    Article  CAS  Google Scholar 

  10. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Green Chem 8:325–327

    Article  CAS  Google Scholar 

  11. Endres F, El Abedin SZ (2006) Phys Chem Chem Phys 8:2101–2116

    Article  CAS  Google Scholar 

  12. Wishart JF, Castner EW Jr (2007) J Phys Chem B 111:4639–4640

    Article  CAS  Google Scholar 

  13. Rogers RD, Voth GA (2007) Acc Chem Res 40:1077–1078

    Article  CAS  Google Scholar 

  14. Welton T (1999) Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  15. Chaban VV, Prezhdo OV (2011) Phys Chem Chem Phys 13:19345–19354

    Article  CAS  Google Scholar 

  16. Chaban VV, Prezhdo OV (2011) J Phys Chem Lett 2:2499–2503

    Article  CAS  Google Scholar 

  17. Seddon KR (1997) J Chem Technol Biotechnol 68:351–356

    Article  CAS  Google Scholar 

  18. Chiappe C, Pieraccini DJ (2005) Phys Org Chem 18:275–297

    Article  CAS  Google Scholar 

  19. Ranke J, Stolte S, Störmann R, Arning J, Jastorff B (2007) Chem Rev 107:2183–2206

    Article  CAS  Google Scholar 

  20. Sun H, Qiao BF, Zhang DJ, Liu CB (2010) J Phys Chem A 114:3990–3996

    Article  CAS  Google Scholar 

  21. Kobrak MN (2006) J Chem Phys 125:064502

    Article  Google Scholar 

  22. Hogan CJ Jr, de la Mora JF (2009) Phys Chem Chem Phys 11:8079–8090

    Article  CAS  Google Scholar 

  23. Graenacher C (1934) Cellulose solution. U.S. Patent 1, 943, 176

  24. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  25. Guo JX, Zhang DJ, Liu CB (2010) J Theor Comput Chem 9:611–624

    Article  CAS  Google Scholar 

  26. Guo JX, Zhang DJ, Duan CG, Liu CB (2010) Carbohyd Res 345:2201–2205

    Article  CAS  Google Scholar 

  27. Youngs TGA, Holbrey JD, Deetlefs M, Nieuwenhuyzen M, Gomes MFC, Hardacre C (2006) Chem Phys Chem 7:2279–2281

    Article  CAS  Google Scholar 

  28. Youngs TGA, Hardacre C, Holbrey JD (2007) J Phys Chem B 111:13765–13774

    Article  CAS  Google Scholar 

  29. Liu ZW, Remsing RC, Moore PB, Moyna G (2007) Ion Liq IV Chapter 23:335–350

    Article  CAS  Google Scholar 

  30. Liu HB, Sale KL, Holmes BM, Simmons BA, Singh S (2010) J Phys Chem B 114:4293–4301

    Article  CAS  Google Scholar 

  31. Youngs TGA, Holbrey JD, Mullan CL, Norman SE, Lagunas MC, D’Agostino C, Mantle MD, Gladden LF, Bowron DT, Hardacre C (2011) Chem Sci 2:1594–1605

    Article  CAS  Google Scholar 

  32. Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Chem Commun 12:1271–1273

    Article  Google Scholar 

  33. Remsing RC, Hernandez G, Swatloski RP, Massefski WW, Rogers RD, Moyna G (2008) J Phys Chem B 112:11071–11078

    Article  CAS  Google Scholar 

  34. Zhang H, Wu J, Zhang J, He JS (2005) Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  35. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) Bioresour Technol 9:2580–2587

    Article  Google Scholar 

  36. Singh S, Simmons BA, Vogel KP (2009) Biotechnol Bioeng 104:68–75

    Article  CAS  Google Scholar 

  37. Himmel ME (2008) Biomass recalcitrance. Wiley-Blackwell, London

    Book  Google Scholar 

  38. Updegraff DM (1969) Anal Biochem 32:420–424

    Article  CAS  Google Scholar 

  39. Murakami MA, Kaneko Y, Kadokawa JI (2007) Carbohydr Polym 69:378–381

    Article  CAS  Google Scholar 

  40. Klemm D, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  41. Woods Group (2005–2011) GLYCAM Web. Complex Carbohydrate Research Center, University of Georgia, Athens, GA. http://www.glycam.com

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski V G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford CT

  43. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  44. Liu ZP, Huang SP, Wang WC (2004) J Phys Chem B 108:12978–12989

    Article  CAS  Google Scholar 

  45. Chaban VV, Voroshylova IV, Kalugin ON (2011) Phys Chem Chem Phys 13:7910–7920

    Article  CAS  Google Scholar 

  46. Chaban V (2011) Phys Chem Chem Phys 13:16055–16062

    Article  CAS  Google Scholar 

  47. Chaban VV, Voroshylova IV, Kalugin ON (2011) ECS Trans 33:43–55

    Article  CAS  Google Scholar 

  48. Kirschner KN, Yongye AB, Tschampel SM, Daniels CR, Foley BL, Woods RJ (2008) J Comput Chem 29:622–655

    Article  CAS  Google Scholar 

  49. Berendsen HJC, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  50. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comp Chem 26:1701–1718

    Article  Google Scholar 

  51. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comp 4:435–447

    Article  CAS  Google Scholar 

  52. Lindahl E, Hess B, van der Spoel D (2001) J Mol Mod 8:306–317

    Google Scholar 

  53. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  54. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  55. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  56. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  57. Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF (2004) J Chem Eng Data 49:954–964

    Article  CAS  Google Scholar 

  58. Cowling EB, Kirk TK (1976) Biotechnol Bioeng Symp 6:95–123

    CAS  Google Scholar 

  59. Reese ET, Mandels M, Weiss AH (1972) Adv Biochem Eng 2:181–200

    Article  CAS  Google Scholar 

  60. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Green Chem 3:156–164

    Article  CAS  Google Scholar 

  61. Keblinski P, Eggebrecht J, Wolf D, Phillpot SR (2000) J Chem Phys 113:282–291

    Article  CAS  Google Scholar 

  62. Dupont J (2004) J Braz Chem Soc 15:341–350

    Article  CAS  Google Scholar 

  63. Lv YQ, Lin ZX, Tan TW, Feng W, Qin PY, Li C (2008) Sens Actuators B 133:15–23

    Article  Google Scholar 

  64. Zhang HY, Feng W, Li C, Tan TW (2010) J Phys Chem B 114:4876–4883

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the grant from the National Natural Science Foundation of China (No. 20773078) and the Higher Educational Science and Technology Program of Shandong Province (No. J11LB08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongju Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 24883 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Pan, W., Wang, R. et al. Understanding the mechanism of cellulose dissolution in 1-butyl-3-methylimidazolium chloride ionic liquid via quantum chemistry calculations and molecular dynamics simulations. J Comput Aided Mol Des 26, 329–337 (2012). https://doi.org/10.1007/s10822-012-9559-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9559-9

Keywords

Navigation