Skip to main content
Log in

The state of the guanosine nucleotide allosterically affects the interfaces of tubulin in protofilament

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The dynamics of microtubules is essential for many microtubule-dependent cellular functions such as the mitosis. It has been recognized for a long time that GTP hydrolysis in αβ-tubulin polymers plays a critical role in this dynamics. However, the effects of the changes in the nature of the guanosine nucleotide at the E-site in β-tubulin on microtubule structure and stability are still not well understood. In the present work, we performed all-atom molecular dynamics simulations of a αβα-tubulin heterotrimer harboring a guanosine nucleotide in three different states at the E-site: GTP, GDP-Pi and GDP. We found that changes in the nucleotide state is associated with significant conformational variations at the α-tubulin N- and β-tubulin M-loops which impact the interactions between tubulin protofilaments. The results also show that GTP hydrolysis reduces αβ-tubulin interdimer contacts in favor of intradimer interface. From an atomistic point view, we propose a role for α-tubulin glutamate residue 254 in catalytic magnesium coordination and identified a water molecule in the nucleotide binding pocket which is most probably required for nucleotide hydrolysis. Finally, the results are discussed with reference to the role of taxol in microtubule stability and the recent tubulin-sT2R crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GTP:

Guanosine triphosphate

GDP:

Guanosine diphosphate

Pi:

Inorganic phosphate

MT:

Microtubule

References

  1. Desai A, Mitchison TJ (1997) Annu Rev Cell Dev Biol 13(1):83–117

    Article  CAS  Google Scholar 

  2. Nogales E (2001) Annu Rev Biophys Biomol Struct 30(1):397–420

    Article  CAS  Google Scholar 

  3. Amos L, Klug A (1974) J Cell Sci 14(3):523–549

    CAS  Google Scholar 

  4. Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, Salmon ED (1988) J Cell Biol 107(4):1437–1448

    Article  CAS  Google Scholar 

  5. Allen C, Borisy GG (1974) J Mol Biol 90(2):381–402

    Article  CAS  Google Scholar 

  6. Burns RG (1991) Cell Motil Cytoskelet 20(3):181–189

    Article  CAS  Google Scholar 

  7. Nogales E, Wolf SG, Downing KH (1998) Nature 391(6663):199–203

    Article  CAS  Google Scholar 

  8. Lowe J, Li H, Downing KH, Nogales E (2001) J Mol Biol 313(5):1045–1057

    Article  CAS  Google Scholar 

  9. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Nature 428(6979):198–202

    Article  CAS  Google Scholar 

  10. Serrano L, de la Torre J, Maccioni RB, Avila J (1984) Proc Natl Acad Sci USA 81(19):5989–5993

    Article  CAS  Google Scholar 

  11. Spiegelman BM, Penningroth SM, Kirschner MW (1977) Cell 12(3):587–600

    Article  CAS  Google Scholar 

  12. David-Pfeuty T, Erickson HP, Pantaloni D (1977) Proc Natl Acad Sci USA 74(12):5372–5376

    Article  CAS  Google Scholar 

  13. Carlier MF, Didry D, Pantaloni D (1997) Biophys J 73(1):418–427

    Article  CAS  Google Scholar 

  14. Correia JJ, Beth AH, Williams RC (1988) J Biol Chem 263(22):10681

    CAS  Google Scholar 

  15. Grover S, Hamel E (1994) Eur J Biochem 222(1):163–172

    Article  CAS  Google Scholar 

  16. Caplow M, Shanks J (1996) Mol Biol Cell 7(4):663–675

    CAS  Google Scholar 

  17. Carlier MF, Didry D, Pantaloni D (1987) Biochemistry 26(14):4428–4437

    Article  CAS  Google Scholar 

  18. O’Brien ET, Voter WA, Erickson HP (1987) Biochemistry 26(13):4148–4156

    Article  Google Scholar 

  19. Panda D, Miller HP, Wilson L (2002) Biochemistry 41(5):1609–1617

    Article  CAS  Google Scholar 

  20. Schek HT 3rd, Gardner MK, Cheng J, Odde DJ, Hunt AJ (2007) Curr Biol 17(17):1445–1455

    Article  CAS  Google Scholar 

  21. Caplow M, Ruhlen RL (1994) J Cell Biol 127(3):779–788

    Article  CAS  Google Scholar 

  22. Nogales E, Wang HW (2006) Curr Opin Struct Biol 16(2):221–229

    Article  CAS  Google Scholar 

  23. Wang HW, Nogales E (2005) Nature 435(7044):911–915

    Article  CAS  Google Scholar 

  24. Buey RM, Diaz JF, Andreu JM (2006) Biochemistry 45(19):5933–5938

    Article  CAS  Google Scholar 

  25. Rice LM, Montabana EA, Agard DA (2008) Proc Natl Acad Sci USA 105(14):5378–5383

    Article  CAS  Google Scholar 

  26. Nawrotek A, Knossow M, Gigant B (2011) J Mol Biol 412(1):35–42

    Article  CAS  Google Scholar 

  27. Gebremichael Y, Chu JW, Voth GA (2008) Biophys J 95(5):2487–2499

    Article  CAS  Google Scholar 

  28. Bennett MJ, Chik JK, Slysz GW, Luchko T, Tuszynski J, Sackett DL, Schriemer DC (2009) Biochemistry 48(22):4858–4870

    Article  CAS  Google Scholar 

  29. Keskin O, Durell SR, Bahar I, Jernigan RL (2002) Biophys J 83(2):663–680

    Article  CAS  Google Scholar 

  30. Mitra A, Sept D (2008) Biophys J 95(7):3252–3258

    Article  CAS  Google Scholar 

  31. Grafmüller A, Voth GA (2011) Structure 19(3):409–417

    Article  Google Scholar 

  32. Fiser A, Sali A (2003) Meth Enzymol 374:461–491

    Article  CAS  Google Scholar 

  33. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J App Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  34. The PyMOL molecular Graphics System, version 1.3.1 Schrödinger, LLC. New York

  35. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  36. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) J Comput Chem 24(16):1999–2012

    Article  CAS  Google Scholar 

  37. Case DA, Darden TA, Cheatham Iii TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvai I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. University of California, San Francisco, CA

  38. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926

    Article  CAS  Google Scholar 

  39. Meagher KL, Redman LT, Carlson HA (2003) J Comput Chem 24(9):1016–1025

    Article  CAS  Google Scholar 

  40. Sousa Da Silva AW, Wranken WF, Laue ED (To be submitted)

  41. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  42. Darden TA, York D, Pedersen L (1993) J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  43. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81(8):3684

    Article  CAS  Google Scholar 

  44. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126(1):014101

    Article  Google Scholar 

  45. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33–38, 27–38

    Google Scholar 

  46. Golovin A, Dimitropoulos D, Oldfield T, Rachedi A, Henrick K (2005) Proteins 58(1):190–199

    Article  CAS  Google Scholar 

  47. Golovin A, Henrick K (2008) BMC Bioinf 9:312

    Article  Google Scholar 

  48. Golovin A, Henrick K (2009) J Chem Inf Model 49(1):22–27

    Article  CAS  Google Scholar 

  49. Dougherty CA, Sage CR, Davis A, Farrell KW (2001) Biochemistry 40(51):15725–15732

    Article  CAS  Google Scholar 

  50. Nogales E, Downing KH, Amos LA, Lowe J (1998) Nat Struct Biol 5(6):451–458

    Article  CAS  Google Scholar 

  51. Friedman ZY, Devary Y (2005) Proteins 59(3):528–533

    Article  CAS  Google Scholar 

  52. Caplow M, Shanks J (1998) Biochemistry 37(37):12994–13002

    Article  CAS  Google Scholar 

  53. Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T (2000) Proc Natl Acad Sci USA 97(6):2904–2909

    Article  CAS  Google Scholar 

  54. Morrissette NS, Mitra A, Sept D, Sibley LD (2004) Mol Biol Cell 15(4):1960–1968

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Manivet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 726 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

André, J.R., Clément, MJ., Adjadj, E. et al. The state of the guanosine nucleotide allosterically affects the interfaces of tubulin in protofilament. J Comput Aided Mol Des 26, 397–407 (2012). https://doi.org/10.1007/s10822-012-9566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9566-x

Keywords

Navigation