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Abstract
Computational prediction of the effects of residue changes on peptide-protein binding affinities,
followed by experimental testing of the top predicted binders, is an efficient strategy for the
rational structure-based design of peptide inhibitors. In this study we apply this approach to the
discovery of competitive antagonists for the secretin receptor, the prototypical member of class B
G protein-coupled receptors (GPCRs). Proteins in this family are involved in peptide hormone-
stimulated signaling and are implicated in several human diseases, making them potential
therapeutic targets. We first validated our computational method by predicting changes in the
binding affinities of several peptides to their cognate class B GPCRs due to alanine replacement
and compared the results with previously published experimental values. Overall, the results
showed a significant correlation between the predicted and experimental ΔΔG values. Next, we
identified candidate inhibitors by applying this method to a homology model of the secretin
receptor bound to an N-terminal truncated secretin peptide. Predictions were made for single
residue replacements to each of the other nineteen naturally occurring amino acids at peptide
residues within the segment binding the receptor N-terminal domain. Amino acid replacements
predicted to most enhance receptor binding were then experimentally tested by competition-
binding assays. We found two residue changes that improved binding affinities by almost one log
unit. Furthermore, a peptide combining both of these favorable modifications resulted in an almost
two log unit improvement in binding affinity, demonstrating the approximately additive effect of
these changes on binding. In order to further investigate possible physical effects of these residue
changes on receptor binding affinity, molecular dynamics simulations were performed on
representatives of the successful peptide analogues (namely A17I, G25R, and A17I/G25R) in
bound and unbound forms. These simulations suggested that a combination of the α-helical
propensity of the unbound peptide and specific interactions between the peptide and the receptor
extracellular domain contribute to their higher binding affinities.
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Introduction
Proteins in the G protein-coupled receptor (GPCR) superfamily, which are characterized by
a 7-helix transmembrane domain, transfer signals across cell membranes and are the targets
of ~30 % of all currently marketed drugs [1]. A subgroup of the GPCR superfamily, class B
GPCRs, bind peptide hormones, regulate physiological functions such as exocrine and
endocrine secretion and neuronal modulation, and are implicated in multiple human diseases
including diabetes, osteoporosis, and psychiatric disorders [2].

Class B GPCRs are distinguished by an N-terminal extracellular domain (ECD), comprised
of ~100–160 residues, which plays an important role in binding peptide hormones.
Structural and functional studies support a ‘two-domain model’ of peptide binding and
activation, in which the C-terminal segment of the peptide binds to the receptor ECD, while
the N-terminal segment of the peptide interacts with the extracellular surface of the receptor
transmembrane domain leading to activation [2, 3]. Generally, N-terminal truncations of the
peptides generate competitive antagonists, while C-terminal truncations remain active but
with a significant decrease in affinity and potency.

While the structure for the full-length class B GPCR remains undetermined, several X-ray
and NMR structures of the receptor ECD with bound peptide were published recently [4–8],
and contribute substantially to our understanding of how these receptors bind their ligands.
The ECDs of class B GPCRs share common structural features, the ‘secretin family
recognition fold’ (or ‘common fold’ for brevity), having a core with two anti-parallel β-
sheets connected by three disulfide bonds. One of the disulfide bonds connects the α-helix
(if present) to the first β-sheet strand. The recognition fold in these structures seems to
suggest a common mode of interaction, with peptide binding in a predominantly α-helical
conformation and in similar orientations (although the position can deviate by 5–7 Å)
sandwiched between the two β-sheets [3].

Experimental alanine scanning of the peptides [9–13] and receptor mutagenesis data are
helpful in determining and understanding which residues in the interface of the complex are
energetically important for the interaction. Modification of the peptide might also enhance
the binding affinity of the peptide for the receptor, which could be useful in developing
inhibitors for studying the inactive conformation or as drugs for some members of class B
GPCRs. However, extensive peptide synthesis requires significant time and cost.
Computational methods that predict the effects of peptide modification on receptor binding
affinity can facilitate a more efficient structure-based rational design of such peptide
inhibitors.

A number of computational methods that can predict the changes in binding free energy
(ΔΔG) caused by residue modifications have been developed. These methods vary in the
force fields used (e.g. with physics-based potentials or knowledge-based potentials or a
hybrid of both) and the scoring function. One of the popular computational tools for
predicting binding free energy change due to a modification is the computational alanine
scanning protocol [14, 15] in the Rosetta protein modeling program. This program calculates
the change in protein–protein binding free energy due to an alanine replacement in the
interface. A similar method developed by Bordner and Abagyan [16] used Biased-
probability Monte Carlo sampling [17] with the Internal Coordinate Mechanics (ICM)
program to predict the effects of single residue changes on protein stability. This approach
was developed by fitting a large set of stability data for such residue replacements in
monomeric proteins. Thus the method using ICM allows for arbitrary modifications by
employing global optimization of a physical energy function to predict the structural effects
of the changes followed by scoring with a physics-based energy function.
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Although the ICM protocol’s application to protein–protein interactions has not yet been
tested, a previous study showed that folding of monomeric and molecular interactions of
multimeric proteins are governed by the similar chemical and physical forces [18], thus the
protocol developed by Bordner and Abagyan [16] can potentially be used for predicting the
effects of residue modifications on protein–peptide interactions. Here, ICM was used to
predict the effect of single residue changes on the stability of protein–peptide interactions as
applied to the binding of peptide hormones to class B GPCRs. In particular, the secretin
(Sec) peptide was used as a representative peptide where residues were computationally
modified to predict the effect of single residue replacements on its binding affinity for the
secretin receptor (SecR), a prototypical member of class B GPCRs. The choice of the test
case extends our previous study to enhance the binding affinity of the Sec/SecR complex
using lactam bridges [19].

It should be noted that predicting the changes in binding affinity due to a single residue
replacement is challenging and is an active area of research. The method of Bordner and
Abagyan [16] have a prediction uncertainty of ~1 kcal/mol, which is more than half an order
of magnitude difference in binding affinity. When applied to class B GPCRs, a number of
other factors could potentially affect the prediction of the changes in binding affinity.
Among them, the transmembrane domain, which is not included in the calculations, could
interact with the peptide and thereby change the thermodynamics of the interaction. The
helicity of the peptide is correlated to the binding affinity, and some modifications may
likely affect the peptide’s helicity in solution. In addition, a residue replacement could
potentially cause a change in the peptide binding site or bound conformation, which is not
accounted for in the prediction methods. Another challenge is the use of a homology model
in this study to predict these residue changes as there is no available X-ray crystal or NMR
structure of secretin bound to the SecR ECD.

In this study, we first showed that the ICM method is capable of predicting changes in the
peptide–protein binding free energy and analyzed other effects of the residue changes not
captured by the modeling procedure. Specifically, the computational alanine scanning of
three crystal structure and two homology models of peptides for class B GPCRs were
performed using the ICM method and compared to experimental data and predictions using
the Rosetta computational alanine scanning method. Next, we applied the ICM method to
the computational design of Sec competitive antagonists by predicting single residue
replacements that are expected to improve Sec–SecR binding affinity and then
experimentally tested the top predicted binders. Lastly, we used molecular dynamics (MD)
simulations to infer the importance of selected modifications on the average helicity of the
unbound peptide and the effects on the interactions between the secretin analogues and the
receptor ECD brought about by these residue changes.

Methods
Experimental structures and homology modeling

The peptide/ECD complex structures used here were either downloaded from the Protein
Data Bank (http://www.rcsb.org/) [20] or generated from homology modeling. The X-ray
crystal structures for glucagon-like peptide 1 with its receptor ECD (GLP1/GLP1R, PDB:
3IOL [4]), the parathyroid hormone with its receptor ECD (PTH/PTH1R, PDB: 3C4M [5]),
and glucose-dependent insulinotropic peptide with its receptor ECD (GIP/GIPR, PDB:
2QKH [6]) were obtained from the Protein Data Bank. The ICM program (version 3.6,
Molsoft LLC) [21] was used to add the missing hydrogen atoms to the crystal structures and
to assign ideal covalent geometry to the residues. A homology model of the peptide
hormones Sec and vasoactive intestinal polypeptide (VIP) docked with the N-terminal
domain of their cognate receptors (SecR and VPAC2, respectively) were built based on the
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X-ray crystal structure of the GLP1/GLP1R complex. The ICM program was used for the
homology modeling, wherein the disulfide bonds and the backbone of the β-sheets of the
ECD were aligned and tethered to the corresponding atoms in GLP1R structure using a
quadratic restraint potential, while the sequence of the peptide was aligned and tethered to
residues 11–30 of GLP1. The peptide/ECD structure was annealed to the tethers and the
structure was refined using energy optimization with Biased-Probability Monte Carlo [17]
simulations for 5 × 107 function calls.

Computational ΔΔG predictions
ICM was used to predict the change in peptide–receptor binding free energy (ΔΔG) due to
single residue changes in the peptide. Biased-Probability Monte Carlo (BPMC) [17]
simulations at T = 700 K were used to optimize the side-chain rotamer angles of each
mutated residue (and its corresponding residue in the wild-type peptide) and all contacting
residues with side-chain non-hydrogen atoms within 4.0 Å of any side-chain non-hydrogen
atoms in the modified residue. The backbone was fixed throughout the simulation and each
simulation had 2 × 105 function calls with up to 2,000 steps of conjugate gradient
minimization for each accepted Monte Carlo move. An energy function with electrostatic,
van der Waals, hydrogen bonding and torsional terms from ECEPP/3 force field [22–24], as
well as solvation [25] and side chain entropy [17] terms were used. The lowest energy
conformation from each simulation was used to determine the ΔΔG for each residue
replaced with an alanine using a protocol described previously [16]. An ICM macro for
performing the ΔΔG calculations is included as a Supplementary file. The ΔΔG
calculations were performed for all crystal structures and homology models. In addition to
the determination of computed ΔΔG values from ICM, the Robetta server (http://
robetta.bakerlab.org/alascansubmit.jsp) for computational alanine scanning was also used
[14, 15]. The calculated ΔΔG was compared to the experimental ΔΔG obtained from the
inhibition constants (Ki) in alanine scanning experiments [9–12]. The experimental

, where R is the ideal gas constant and T is the temperature.

Moreover, in order to account for flexibility, ΔΔG predictions were also performed using
structures extracted every 2 ns of the last 10 ns of a 30-ns molecular dynamics simulation
for Sec/SecR (discussed below). For the Sec/SecR system, each secretin amino acid in
positions 16 through 27 (located within the proposed ligand-binding cleft in the ECD) were
replaced in the calculation with each of the other nineteen naturally-occurring amino acids.
Only replacements in positions 17, 20, 23, 24, and 25 were predicted to result in higher
binding energy. These included replacement of Ala in position 17 with Ile, replacement of
Gln in position 20 with Glu, Ile, Leu, Met, and Tyr, replacement of Leu in position 23 with
Tyr, replacement of Gln in position 24 with Ile and Thr, and replacement of Gly in position
25 with Asp, Ile, Tyr, Arg, and Trp. The predicted ΔΔG values for these peptide
modifications are shown in Table 1.

Experimental verification of predicted peptide residue replacements
Peptides—Peptides representing a truncated form of rat secretin eliminating the first four
residues at the amino terminus (extending from residue 5 to residue 27 (Sec(5–27)) and 15
analogues of this peptide incorporating amino acid changes in positions 17, 20, 23, 24 and
25 that were predicted to enhance binding affinity were prepared (Table 1). All peptides
were synthesized and purified to greater than 98 % purity by GenScript (Piscataway, NJ)
and Selleck Chemicals (Houston, TX). Expected molecular masses were verified by matrix-
assisted laser desorption/ionization-time-of-flight mass spectrometry.

The [Tyr10]rat secretin-27 analogue that was used as a radioligand in ligand binding assays
was synthesized in our laboratory and radioiodinated oxidatively using 1 mCi Na125I
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(PerkinElmer Inc., Waltham, MA) and exposure for 15 s to the solid phase oxidant, N-
chlorobenzenesulfonamide (Iodination beads) (Pierce, Rockford, IL), as we described
previously [26]. The radioiodinated peptide was purified by reversed-phase HPLC to yield
specific radioactivity of 2,000 Ci/mmol [26].

Ligand binding—The secretin analogues listed in Table 1 were examined for their ability
to compete for binding of the radioligand, [Tyr10]rat secretin-27, to the Chinese hamster
ovary cell line stably expressing the wild type rat secretin receptor (CHO–SecR) [26] using
whole cell binding in 24-well tissue culture plates. For this, approximately 50,000 cells were
plated into each well and were grown for approximately 72 h prior to the assay. Cells were
washed twice with Krebs-Ringers/HEPES (KRH) medium (25 mM HEPES (pH 7.4), 104
mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM KH2PO4, and 1.2 mM MgSO4) containing 0.01
% soybean trypsin inhibitor and 0.2 % bovine serum albumin, and were then incubated with
a constant amount of radioligand, 125I–[Tyr10]rat secretin(1–27) (5 pM, approximately
20,000 rpm), and increasing concentrations of secretin analogues (ranging from 0 to 1 μM)
for 60 min at room temperature. Cells were then washed twice with ice-cold KRH medium
containing 0.01 % soybean trypsin inhibitor and 0.2 % bovine serum albumin to separate
free from cell-bound radioligand. The plate-bound cells were lysed with 0.5 M NaOH and
radioactivity was quantified with a γ-spectrometer. Nonspecific binding was determined in
the presence of 0.1 μM secretin and represented less than 10 % of total radioligand bound.
Competition-binding curves were analyzed and plotted using the non-linear regression
analysis program in the Prism software suite v3.0. Binding kinetics were determined by
analysis with the LIGAND program of Munson and Rodbard [27].

Molecular dynamics simulations
Molecular dynamics (MD) simulations were used to equilibrate the homology models, to
gain insights into the peptide–receptor complexes, and to determine the helicities of the
unbound peptides. The GROMACS software package (version 4.5.3) [28] with Amber
ff99sb-ildn all-atom parameters [29] was used to perform the simulations. The peptide was
solvated in pre-equilibrated TIP3P water model [30] and the appropriate number of ions
were added to make the system neutral. The system was equilibrated under a canonical
(NVT) ensemble for 200 ps using the Berendsen thermostat [31] with a relaxation time of
0.1 ps for temperature control. The system was further equilibrated in an isothermal–isobaric
(NPT) ensemble for another 500 ps using the Parrinello–Rahman barostat [32] with a
relaxation time of 2.0 ps. The reference temperature and pressure for the system were 300 K
and 0.1 MPa, respectively. Position restraints (with spring constant of 1,000 kJ/mol nm2)
were applied to all non-hydrogen atoms of the protein complex during the equilibration. All
simulations had 2-fs timesteps with the linear constraint solver method [33] used to
constrain all bond lengths. The Lennard-Jones and electrostatic interactions were cut-off at
10 Å and the neighbor list was updated every 10 fs. Long-range electrostatic interactions
were treated using the particle mesh Ewald method [34] with fourth-order spline
interpolation and 1.6 Å grid spacing. Following equilibration, NPT ensemble production
runs were performed. Two independent simulations, each lasting 30 ns, were performed for
the Sec/SecR complex. Six conformations (every 2 ns from t = 20 ns to t = 30 ns) from each
independent MD simulation were extracted and used in the ΔΔG calculation described
above. The averaging was performed since multiple conformations were likely to improve
the prediction of ΔΔG by accounting for structural flexibility.

The first simulation was extended to 100 ns (MD1). Secretin analogues in complex with its
receptor was obtained by extracting the coordinates of MD1 at t = 60 ns and introducing
mutations to particular residues. Another round of equilibration (700 ps) was followed by
another 40-ns simulation run for each complex. For the unbound peptides, 100-ns MD
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simulations were performed. Coordinates from the simulation were saved every 20 ps for
analysis of the last 50 ns of the simulation for the unbound peptide and the last 20 ns of the
peptide–ECD complex. The analysis was performed using the built-in tools in GROMACS.

Results and discussion
Alanine mutations

The accuracy of the ICM computational method [16] applied to peptide–GPCR complexes
was assessed by comparisons between predicted and experimental binding free energy
(ΔΔG) values. Prediction were made for ala-nine replacements of residues 23–34 of GLP1,
residues 18–31 of PTH and certain residues of GIP (Fig. 1a), all of which have crystal
structures in complex with their respective receptor ECDs [4–6] and also available
experimental alanine scanning data [6, 11, 12]. These portions of the peptide hormones are
located within the proposed ligand-binding cleft in the ECD. In GLP1/GLP1R, residues 24,
25, and 30 are alanine and so were not included in the ΔΔG calculation. The ΔΔG values
predicted from the computational alanine scanning were correlated with the available
experimental alanine scanning data [6, 11, 12]. The coefficient of determination (R2) for
GLP1/GLP1R, PTH/PTH1R, and GIP/GIPR were 0.60, 0.77, and 0.57, respectively.

The Robetta alanine scanning server was used to verify the performance of ICM (Fig. 1b).
For the peptide–ECD with existing crystal structures, the calculated ΔΔG from the Robetta
server for GLP1/GLP1R and PTH/PTH1R were in good agreement with experimental
alanine scanning data (R2 = 0.84 and 0.83, respectively), although the correlation for GIP/
GIPR was poor (R2 = 0.19). Although the ICM protocol performed better for GIP/GIPR,
with the given number of available alanine scanning experiments and crystal structures, it
would be hard to conclude which method performs better. These results do indicate,
however, that even though the ICM prediction method was parameterized from fitting
mutation data of monomeric proteins, it is likely applicable to protein–protein interactions
and its performance on alanine mutation is comparable to that of the Robetta server.

While some peptide–ECD complexes have existing crystal or NMR structures, the structures
for other complexes are yet to be determined. Here, homology models based on the common
interaction mode for peptides binding to class B GPCRs were created. In the modeling
procedure, the conserved disulfide bonds and the backbones of the two anti-parallel β-sheets
were tethered while allowing the loops and the α-helix to sample the conformational space
through a Biased-Probability Monte Carlo simulation in ICM. This is a justified assumption
considering that the β sheets and the disulfide bonds are part of the structurally conserved
region while the loop conformations are observed to vary in structure superpositions of
different ECD structures within the protein family [3].

Previously, the computational protocol in ICM was used to predict the change in binding
free energy for residues 15–27 (except residue 17, which is alanine) in Sec [10]. Notably,
the calculations were able to predict the critical residues in Sec, especially the negative
effect on binding affinity from alanine replacements of Leu19, Leu22, and Leu23 [10], which
lie in the binding cleft of the ECD. In addition, the change in binding free energy for
residues 20–28 in VIP (Fig. 1a), and certain residues of PACAP/PAC1 (data not shown) that
have available experimental alanine scanning data were predicted reasonably accurately. In
VIP, the deleterious effects on binding upon the replacement of Tyr22 and Leu23 with
alanine [9] were well predicted. Overall, the ΔΔG prediction using homology models
qualitatively agreed with the experimental alanine scanning data [9, 10].
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Binding characterization of the Sec(5–27) analogues
Antagonists are desirable drugs for several class B GPCRs and may be useful for
understanding inactive conformations of this family of receptors. It is recognized that
amino-terminal truncation of natural peptide ligands for this GPCR class results in
competitive antagonists [35–37]. Indeed, truncation of the first four amino-terminal residues
of secretin eliminates its endogenous agonist activity, but because the secretin amino
terminus also contributes important receptor-binding determinants, the resulting peptide
(Sec(5–27)) has a binding affinity more than two orders of magnitude lower than that of the
natural ligand [36, 38–40].

To improve the binding affinity between Sec(5–27) and SecR, peptide modifications that
would stabilize the peptide–protein interactions were predicted using the ICM method.
Although high resolution structures of the receptor ECD suggest similarity in structural
motifs and ligand binding modes among several members, there are inconsistencies in the
absolute sites of ligand binding and in the positioning (5–7 Å deviation) of the ligands in
these structures [3], suggesting some variation in binding interactions across this family.
Furthermore, alternative binding conformations have been proposed for docking the flexible
amino-terminal regions of ligands to these receptors and it was, indeed, due to such
differences that we used MD simulations to refine the receptor–peptide interaction of Sec/
SecR homology model. Subsequently, six atomic coordinates were extracted from the last
10 ns of each MD simulation, and the change in binding free energy was predicted using
ICM and compared to the experimental alanine scanning data (Fig. 2a). As with the original
homology model (before MD simulation), the negative effect on binding affinity from
alanine replacements of Leu19, Leu22, and Leu23 were predicted with good qualitative
agreement. According to the MD simulations, these three residues were also shown to have
lower relative solvent-accessible surface area (SASA) than other residues (Fig. 2b). The
changes in Leu26 and Val27, which are on the tail end of the C-terminus and were rather
solvent-exposed, exhibited the greatest deviation in calculated ΔΔG for the two independent
MD simulations. Arg18, which also has a large solvent-accessible surface area, gave a false-
negative result. It is interesting that Arg18 is three residues away from Asp15, and the two
residues might form a salt bridge that can stabilize the α-helical conformation of the peptide,
as discussed below.

While the computational alanine scanning showed reasonable agreement with experimental
data, residue replacements with alanine are more predictable in terms of computation [41];
however, the challenge is to predict non-alanine changes, particularly those replacing small
residues with large residues. Thus, using the Sec/SecR system, we tried to predict favorable
single-point modifications that might improve the binding of Sec(5–27) to SecR by
replacing residues 16–27 of Sec with each of the 19 other natural amino acids.
Unfortunately, the ΔΔG predictions did not identify mutations for Leu19, Leu22, and Leu23

that might improve binding (data not shown), except for one modification where Leu23 was
replaced with Tyr ([Y23]sec(5–27)). Experimentally, however, the ([Y23]sec(5–27) analogue
significantly decreased binding (Table 2). Although we could not eliminate the uncertainty
of the ICM protocol to give false-negative or false-positive predictions, it is possible that
certain critical amino acids in the peptide are optimized for binding to the receptor. Previous
efforts to modify Leu19 (which like Leu23 is assumed to be buried in the binding cleft) by
replacing it with a smaller or larger hydrophobic residue were unable to yield peptides that
bound better than or comparable to the natural peptide ligand. The replacement of Leu19

with alanine decreased the binding affinity by >2 orders of magnitude [10]. Modifying
residue 19 to Trp also significantly decreased the binding affinity (unpublished results).

Focusing on peptide residues that have contacts with residues in the receptor, we performed
13 additional modifications that have predicted ΔΔG ≤ −1.0 kcal/mol and z-score > 2 in at
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least one of the two independent predictions. In this work, peptide analogues of Sec(5–27)
incorporating single amino acid changes that were predicted to improve binding affinity
were characterized. Their secretin receptor binding affinities are shown in Table 2. Of note,
most of the peptide analogues predicted to have improved binding affinities were found to
bind with affinities at least as high as that of the parental truncated peptide. In addition to
[Y23]sec(5–27), [E20]sec(5–27) was found to have significantly lower binding affinity than
the parental peptide.

It should be noted that the ICM binding affinity prediction is based on a conservative
sampling procedure, in which the conformation of the modified residue is optimized within
a fixed backbone environment. Methods including backbone sampling and relaxation [42,
43] might improve predictions of ΔΔG, although this can potentially introduce additional
error and so perform worse than the current ICM procedure if structural changes are
negligible [44]. Furthermore, the use of a homology model to predict ΔΔG introduces
additional uncertainty in the prediction results.

However, seven of the analogues, involving positions 17, 20, and 25, had improved binding
affinities relative to that of the parental truncated peptide. Of these, [I17]sec(5–27) and
[R25]sec(5–27) had the highest affinities, with each increasing binding affinity by almost an
order of magnitude relative to that of Sec(5–27).

The Sec(5–27) analogue that combined both of these amino acid changes, isoleucine in
position 17 and arginine in position 25, was also prepared and studied. Figure 3 shows that
the effects of each change were additive, with the peptide incorporating both changes,
[I17,R25]sec(5–27), significantly improving the binding affinity. The affinity of this peptide
was approximately an order of magnitude higher than that of the peptides incorporating only
one of these amino acid changes and approximately two orders of magnitude higher than
that of Sec(5–27).

Molecular dynamics simulations of peptides
Sec/SecR complex—MD simulations of the strongest binding secretin analogues in
complex with SecR were performed in order to gain further insight into specific interactions
that may explain their high binding affinities. In particular, 40-ns simulations of SecR with
three bound secretin analogues ([I17]sec(5–27), [R25]sec(5–27), and [I17,R25]sec(5–27))
were performed (Fig. 4a). The root mean square fluctuations (RMSF) per residue of the
peptides during the last 20 ns of each trajectory were analyzed. Interestingly, the secretin
analogues [R25]sec(5–27) and [I17,R25]sec(5–27), but not [I17]sec(5–27), had smaller
RMSF, which might indicate stability, on residues that were shown to be critical in alanine
scanning experiment such as Leu19, Leu22, and Leu23 compared to Sec(5–27) (Fig. 4b). In
addition, the analyses suggest that the strongest binder, [I17,R25]sec(5–27), has the largest
increase in surface area, calculated as ΔASA = ASApeptide + ASAreceptor − ASAcomplex,
buried in the interaction between the peptide and receptor (Table 3). Additionally, this
peptide has more favorable van der Waals interactions between residues 15 and 27 of the
peptide and residues of the receptor that are within 5 Å of the specified peptide region.
Because the nature of the interaction between Sec and the receptor is largely hydrophobic,
van der Waals interactions and tight packing at the interface might contribute more to
binding affinity. [R25]sec(5–27) also displayed larger ΔASA and more favorable van der
Waals energy than Sec(5–27) (Table 3). Interestingly, the interface surface area for
[I17]sec(5–27) was slightly lower than Sec(5–27), and the former only has a slightly more
favorable van der Waals interaction than the latter.

Unbound secretin in solution—Properties of the unbound secretin analogues can also
influence their binding affinities to the secretin receptor. In particular, peptide ligands for
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other members of the protein family (except for calcitonin, whose helical structure is
stabilized by a disulfide bond) are known to undergo a transition from a generally disordered
conformation in solution to a more ordered α-helical conformation upon binding their
cognate receptors [3]. This is expected to oppose binding due to the lower conformational
entropy of the bound peptide. In contrast, modifications that stabilize the helical
conformation of the free peptide in solution may reduce this entropic penalty and thereby
increase binding affinity. In order to investigate this possible contribution to binding affinity
that is not accounted for in the ΔΔG prediction method, simulations of the unbound secretin
analogues as well as full-length and truncated wild-type secretin as controls were performed
(100 ns each). Analyses from the last 50 ns of the simulation of the unbound peptides
revealed some interesting differences. Sec(1–27) was on average more α-helical than the
truncated Sec(5–27) (Fig. 5), suggesting that the truncation of residues 1–4 in the peptide
might reduce the helicity of the unbound peptide and, therefore, contribute to its lower
binding affinity. In comparison to full-length secretin, where the average number of residues
involved in a helical structure (α-helix) at residues 15–27 C-termini was 7.26 (no 310-helical
conformations observed), the truncated secretin peptide was less helical, with 1.73 and 1.60
average number of residues involved in α-helical and 310-helical conformations,
respectively. This result is consistent with our previous results obtained using ICM biased-
probability Monte Carlo simulations [19], in which the truncated peptide was less helical
than the full-length peptide, although the ICM simulations predicted generally higher
helicities than the current MD simulations.

The helicity in the C-termini of the Sec peptides (for both Sec(1–27) and Sec(5–27)) was
likely due to the salt bridge formed between Arg18 and Asp15. An MD simulation of
[A18]sec(1–27) was performed to test this hypothesis. A snapshot of the [A18]sec(1–27)
mutant at the end of the 100-ns simulation showed a less α-helical C-terminus in the peptide
compared to the natural peptide (Fig. 5). The average number of residues involved in a
helical structure (α-helix) at residues 15–27 C-termini for the [A18]sec(1–27) were 0 and
0.54, for α- and 310-helices, respectively. The average Asp15–Arg18 separation distance was
2.18 ± 0.43 Å, indicative of a salt bridge, for Sec(1–27); while the Asp15–Ala18 separation
distance for the modified peptide was a larger 6.70 ± 0.93 Å.

The MD simulations showed that changing alanine in residue 17 to isoleucine may have
stabilized the secondary structure of the C-terminus of the peptide and so contributed to
improved binding affinity. Simulations of [I17]sec(5–27) and [I17,R25]sec(5–27) in solution
have on average significantly higher numbers of residues involved in α-helical conformation
(Table 3). On the other hand, the average helical content in [R25]sec(5–27) was comparable
to Sec(5–27). Is it possible that [I17]sec(5–27) and [R25]sec(5–27) have different effects on
the secretin peptide? While we do not eliminate other possibilities for the observed
approximate additivity of the binding affinity for [I17]sec(5–27) and [R25]sec(5–27)
compared with [I17,R25]sec(5–27), it is interesting to speculate that both the unbound form
of the peptide and the specific interactions in the peptide–receptor interface could
independently contribute to the stability of the complex.

In general, these simulations suggest that some modifications in the peptide might affect the
helicity of the unbound peptide in solution. Experimentally, peptide hormones are relatively
“unstructured,” where the helicity of the peptide increases upon binding. Unbound peptides
that have some degree of helicity were shown to have higher affinities for the extracellular
domain of the receptor [4, 45], most likely because there is less entropic cost for the
secondary structure formation. If the findings based on the MD simulations are correct, then
the structure of the unbound peptide must be accounted for in order to improve the
computational predictions of the binding affinities of peptide hormones for their receptors.
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Conclusions
Here, we showed that the ICM method for predicting changes in binding free energy (ΔΔG)
was relatively successful when applied to peptides bound to the extracellular domain of class
B GPCRs. This method was comparable to Robetta computational alanine scanning in
predicting deleterious effects of changing critical residues to alanine for peptides bound to
the ECD of several members of class B GPCRs. In addition, the ICM method was applied to
designing a competitive antagonist of the secretin receptor by predicting single-point
changes in the secretin peptide that have improved binding affinities. Experimental
measurements of Ki for the top predicted binders revealed that two of the predicted
inhibitors, [I17]sec(5–27) and [R25]sec(5–27), had binding affinities that were almost an
order of magnitude higher than that of the original Sec(5–27) peptide. Furthermore,
combining these two modifications in [I17,R25]sec(5–27) resulted in a peptide with an even
greater affinity, approximately two orders of magnitude higher than that of Sec(5–27),
demonstrating that these two changes have an approximately additive effect on binding
affinity. MD simulations of the secretin analogues both in solution and bound to the secretin
receptor suggest that the dominant effects of the two residue changes on SecR binding may
be different, with [R25]sec(1–27) stabilizing the interaction with the complex and
[I17]sec(1–27) stabilizing the helical conformation of the unbound peptide. These results
suggest that a computational method that also predicts the relative α-helix content of the
free peptides and then uses these in the calculation of ΔΔG may yield more accurate results
for this system. Given the uncertainty introduced by the use of a homology model for the
structure of the peptide–receptor complex, the conservative approach used here of predicting
single residue modifications may be optimal. However, for peptide–receptor complexes with
an available high-resolution X-ray crystal structure consideration of multiple changes at
nearby residues, that are not expected to have additive effects on binding, may be a more
efficient design strategy. Finally, we note that many other peptide–protein interactions
represent potential targets for discovering antagonists for use as molecular probes of these
interactions or therapeutics. The computational method presented here should also be
applicable to other interactions and can serve as a filter in selecting candidate antagonists for
experimental testing.
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Fig. 1.
Alanine scanning of peptides bound to the ECD of class B GPCRS. Plots of calculated
versus experimental ΔΔG values (kcal/mol) with calculations performed using a ICM or b
Rosetta for the replacements of non-alanine residues 23–34 of GLP1, 18–31 of PTH, and
20–28 of VIP with alanine. Residues of GIP (19, 20, 22, 23, 26, 27, 30) with available
experimental data were also modified. The coefficient of determination (R2) statistics
between the calculated and experimental ΔΔG values for the different complexes are given
in c. In b the point for PTH R20A with a calculated ΔΔG of 8.66 kcal/mol versus the
experimental ΔΔG of 2.96 kcal/mol is not shown
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Fig. 2.
Computational alanine scanning and solvent-accessible surface area of the Sec/SecR
complex. a Shown are the averages ΔΔG (kcal/mol) calculated by ICM for Sec alanine
replacements using 6 snapshots of the molecular dynamics simulations (every 2 ns from t =
20 to t = 30 ns of two-independent MD simulations represented by open and filled circles,
respectively) for residues 16–27 of Sec/SecR. The coefficients of determination (R2) for
Sec/SecR excluding Arg18, a false negative in the calculation, for these two simulations
were 0.78 and 0.77. b Shown are the average relative solvent-accessible surface areas for
each residue in the peptide. Snapshots taken every 100 ps from t = 20 to t = 30 ns for the
same MD simulations as above were used to calculate the SASA values. The relative SASA
was determined by dividing the SASA for each peptide residue by the maximum SASA for
that residue type, as calculated for the residue in an extended conformation between two
glycines. A smaller relative SASA value was associated with a more buried peptide residue
in the simulation of the peptide–receptor complex
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Fig. 3.
Binding characterization of Sec(5–27) analogues. Shown are curves of increasing
concentrations of Sec(5–27), [I17]sec(5–27), [R25]sec(5–27) and [I17,R25]sec(5–27) to
compete for binding of the radioligand, 125I–[Tyr10]rat secretin(1–27), to CHO–SecR cells.
Values represent percentages of saturable binding, expressed as the means ± SEM of
duplicate values from a minimum of three independent experiments
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Fig. 4.
Molecular dynamics simulation of the Sec/SecR complex. a Shown is a representative
conformation of [I17,R25]sec(5–27) (blue) bound to the SecR ECD (gray) at t = 40 ns. b
Also shown is the root mean square fluctuation of the secretin residues during the last 20 ns
of the simulation
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Fig. 5.
Snapshot of the unbound peptide after the 100-ns MD simulation. Shown clockwise from
the top left are the conformations of the full-length natural secretin, the full-length R18A
secretin variant, truncated natural secretin sec(5–27), and the secretin analogues
[I17,R25]sec(5–27), [R25]sec(5–27), and [I17]sec(5–27)
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Table 2

Primary structures and binding characteristics of Sec(5–27) and its analogues

Shown are the amino acid sequences of amino-terminally truncated rat secretin (Sec(5–27)) and its analogues. Natural residues in the analogues are
colored gray, while modified residues are colored black. Shown also are the IC50 values expressed as means ± SEM. Two-tailed P value tests were

performed to determine the significance of differences using InStat3 (GraphPad Software, San Diego, CA). * and ** indicate values that are
significantly different from that of sec(5–27) (P < 0.05 and P < 0.01, respectively)
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Table 3

Properties of the secretin analogues in complex and unbound conformations

Sec(5–27) [I17]sec(5–27) [R25]sec(5–27) [I17,R25]sec(5–27)

Hydrophobic ΔASA (Å2) 230 211 272 289

Hydrophilic ΔASA (Å2) 738 705 795 830

van der Waals energya −31.6 −33.7 −44.9 −43.7

Electrostatic energya −1.0 −0.8 −0.7 −1.1

α-helixb 1.73 7.32 1.76 8.54

310-helixb 1.60 0.11 1.43 0.29

Shown are the change solvent accessible surface area (in Å2) and the van der Waals and electrostatic energy components (in kcal/mol) for the
secretin analogue in complex with the ECD of the interaction. Also shown is the average number of residues involved in particular secondary
structure for the unbound analogues in solution

a
Energy components were determined by ICM based on the interaction between residues 15 and 27 in the peptide and its neighboring residues in

the receptor (within 5 Å)

bα-helix and 310-helix content were measured using the do_dssp program [46] implemented in GROMACS and reflects the average number of

residues within the C-termini (residues 15 and 27) with that particular secondary structure
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