Skip to main content
Log in

Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

“When you have a deep truth, then the opposite of a deep truth may again be a deep truth.”

N. Bohr.

Abstract

In this report, we present a new mathematical approach for describing chemical structures of organic molecules at atomic-molecular level, proposing for the first time the use of the concept of the derivative (\( \partial \)) of a molecular graph (MG) with respect to a given event (E), to obtain a new family of molecular descriptors (MDs). With this purpose, a new matrix representation of the MG, which generalizes graph’s theory’s traditional incidence matrix, is introduced. This matrix, denominated the generalized incidence matrix, Q, arises from the Boolean representation of molecular sub-graphs that participate in the formation of the graph molecular skeleton MG and could be complete (representing all possible connected sub-graphs) or constitute sub-graphs of determined orders or types as well as a combination of these. The Q matrix is a non-quadratic and unsymmetrical in nature, its columns (n) and rows (m) are conditions (letters) and collection of conditions (words) with which the event occurs. This non-quadratic and unsymmetrical matrix is transformed, by algebraic manipulation, to a quadratic and symmetric matrix known as relations frequency matrix, F, which characterizes the participation intensity of the conditions (letters) in the events (words). With F, we calculate the derivative over a pair of atomic nuclei. The local index for the atomic nuclei i, Δ i , can therefore be obtained as a linear combination of all the pair derivatives of the atomic nuclei i with all the rest of the j′s atomic nuclei. Here, we also define new strategies that generalize the present form of obtaining global or local (group or atom-type) invariants from atomic contributions (local vertex invariants, LOVIs). In respect to this, metric (norms), means and statistical invariants are introduced. These invariants are applied to a vector whose components are the values Δ i for the atomic nuclei of the molecule or its fragments. Moreover, with the purpose of differentiating among different atoms, an atomic weighting scheme (atom-type labels) is used in the formation of the matrix Q or in LOVIs state. The obtained indices were utilized to describe the partition coefficient (Log P) and the reactivity index (Log K) of the 34 derivatives of 2-furylethylenes. In all the cases, our MDs showed better statistical results than those previously obtained using some of the most used families of MDs in chemometric practice. Therefore, it has been demonstrated to that the proposed MDs are useful in molecular design and permit obtaining easier and robust mathematical models than the majority of those reported in the literature. All this range of mentioned possibilities open “the doors” to the creation of a new family of MDs, using the graph derivative, and avail a new tool for QSAR/QSPR and molecular diversity/similarity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Germany

    Book  Google Scholar 

  2. Todeschini R, Consonni V, Pavan M (2002) 2.1 ed., Milano Chemometric and QSAR Research Group, Milano, Italy

  3. Katritzky AR, Perumal S, Petrukhin R, Kleinpeter E (2001) J Chem Inf Comput Sci 41:569

    Article  CAS  Google Scholar 

  4. 2.13 ed. 7204 Mullen, Shawnee, KS 66216, USA

  5. Gugisch R, Kerber A, Laue R, Meringer M, Weidinger J University of Bayreuth, D-95440 Bayreuth, Germany

  6. Topological Indices and Related Descriptors in QSAR and QSPR; Devillers, J. B., A. T, Ed.; Gordon and Breach Amsterdam, The Netherlands, 1999

  7. Todeschini R, Consonni V (2010) MATCH Commun. Math. Comput. Chem 64:359

    CAS  Google Scholar 

  8. Devillers J (2000) Curr Opin Drug Discovery Dev. 3

  9. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley, New York

    Google Scholar 

  10. Estrada E, Uriarte E (2001) Curr Med Chem 8:1573

    Article  CAS  Google Scholar 

  11. Estrada E, Rodríguez L (1997) Comm Math Chem (MATCH) 35:157

    CAS  Google Scholar 

  12. Randić M (1991) J Math Chem 7:155

    Article  Google Scholar 

  13. Randić M, Trinajstić NJ (1993) Mol Struct (Theochem) 300:551

    Google Scholar 

  14. Kier LB, Hall LH (1999) Molecular structure description. The electrotopological state. Academic Press, New York

    Google Scholar 

  15. Rouvray DH (1976) Chemical applications of graph theory. Academic Press, London

    Google Scholar 

  16. Kier LB, Hall LH (1986) Molecular connectivity in structure—activity analysis. Research Studies Press, Letchworth

    Google Scholar 

  17. Ivanciuc O, Gasteiger J (2003) Ed. Wiley-VCH, Weinheim, p 103

    Google Scholar 

  18. Balaban AT (1997) From chemical graphs to three-dimensional geometry. Plenum Press, New York

    Google Scholar 

  19. Estrada E (2001) Chem Phys Lett 336:248

    Article  CAS  Google Scholar 

  20. Estrada E, Rodríguez L, Gutierrez A (1997) Commun Math Chem (MATCH) 35:145

    CAS  Google Scholar 

  21. Aires-de-Sousa J, Gasteiger J (2002) J Mol Graph Model 20:373

    Article  CAS  Google Scholar 

  22. Golbraikh A, Bonchev D, Tropsha A (2001) J Chem Inf Comput Sci 41:147

    Article  CAS  Google Scholar 

  23. Marrero-Ponce Y, Castillo-Garit JA, Castro EA, Torrens F, Rotondo RJ (2008) Math. Chem. doi:10.1007/s10910-008-9386-3

    Google Scholar 

  24. Gorbátov VA (1988) Fundamentos de la Matematica discreta, Mir, Moscow, URSS

  25. Daudel R, Lefebre R, Moser C (1984) Quantum chemistry: methods and applications. Wiley, New York

    Google Scholar 

  26. Marrero-Ponce Y (2002) version 1.0 ed., Unit of computer-aided molecular “Biosilico” Discovery and Bioinformatic Research (CAMD-BIR Unit): Santa Clara, Villa Clara

  27. Estrada E, Molina E (2001) J Mol Graph Model 20:54

    Article  CAS  Google Scholar 

  28. Estrada E, Molina E (2001) J Chem Inf Comput Sci 41:791

    Article  CAS  Google Scholar 

  29. Dore JC, Viel C (1975) Farmaco 30:81

    CAS  Google Scholar 

  30. Martínez Santiago O, Martínez-López Y, Marrero-Ponce Y (2010) version 1.0 ed., Unit of computer-aided molecular “Biosilico” discovery and bioinformatic research (CAMD-BIR Unit), Santa Clara, Villa Clara, Cuba

  31. Todeschini R, Consonni V, Mauri A, Pavan M (2005) 1.0 ed., Talete, Milano

  32. Goldberg DE (1989) Genetic algorithms. Addison Wesley, Reading

    Google Scholar 

  33. Rogers D, Hopfinger AJJ (1994) Chem Inf Comput Sci 34:854

    Article  CAS  Google Scholar 

  34. So SS, Karplus M (1996) J Med Chem 39:1521

    Article  CAS  Google Scholar 

  35. Stankevich V, Skvortsova MI, Zefirov NSJ (1995) Mol Struct (THEOCHEM) 342:173

    Article  CAS  Google Scholar 

  36. Galvez JJ (1998) Mol Struct (THEOCHEM) 429:255

    Article  CAS  Google Scholar 

  37. Kier LB, Hall LHJ (2000) Chem Inf Comput Sci 40:792

    Article  CAS  Google Scholar 

  38. Kier LB, Hall LH (2001) J Mol Graph Model 20:76

    Article  CAS  Google Scholar 

  39. Randic M, Hansen PJ, Jurs PCJ (1988) Chem Inf Comput Sci 28:60

    Article  CAS  Google Scholar 

  40. Estrada EJ (2002) Phys Chem A 106:9085

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Marrero-Ponce, Y. thanks the program ‘Estades Temporals per a Investigadors Convidats’ for a fellowship to work at Valencia University in 2011. The authors acknowledge also the partial financial support from Spanish “Comisión Interministerial de Ciencia y Tecnología” (CICYT) (Project Reference: SAF2009-10399). Finally, but not least, this work was supported in part by VLIR (Vlaamse InterUniversitaire Raad, Flemish Interuniversity Council, Belgium) under the IUC Program VLIR-UCLV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yovani Marrero-Ponce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrero-Ponce, Y., Santiago, O.M., López, Y.M. et al. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application. J Comput Aided Mol Des 26, 1229–1246 (2012). https://doi.org/10.1007/s10822-012-9591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9591-9

Keywords

Navigation