Skip to main content
Log in

A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C–N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NDM-1:

New Delhi metallo-β-lactamase-1

MBLs:

Metallo-β-lactamases

MD:

Molecular dynamics

QM/MM:

Quantum mechanics/molecular mechanics

RMSD:

Root mean square deviation

References

  1. Drawz SM, Bonomo RA (2010) Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 23(1):160–201. doi:10.1128/CMR.00037-09

    Article  CAS  Google Scholar 

  2. Hall BG, Barlow M (2005) Revised Ambler classification of {beta}-lactamases. J Antimicrob Chemother 55(6):1050–1051. doi:10.1093/jac/dki130

    Article  CAS  Google Scholar 

  3. Bush K (1998) Metallo-beta-lactamases: a class apart. Clin Infect Dis 27(Suppl 1):S48–S53

    Article  CAS  Google Scholar 

  4. Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54(3):969–976. doi:10.1128/AAC.01009-09

    Article  CAS  Google Scholar 

  5. Crowder MW, Spencer J, Vila AJ (2006) Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res 39(10):721–728. doi:10.1021/ar0400241

    Article  CAS  Google Scholar 

  6. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frere JM (2001) Standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 45(3):660–663. doi:10.1128/AAC.45.3.660-663.2001

    Article  CAS  Google Scholar 

  7. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA (2011) Carbapenems: past, present, and future. Antimicrob Agents Chemother 55(11):4943–4960. doi:10.1128/AAC.00296-11

    Article  CAS  Google Scholar 

  8. Perez-Llarena FJ, Bou G (2009) beta-Lactamase inhibitors: the story so far. Curr Med Chem 16(28):3740–3765

    Article  CAS  Google Scholar 

  9. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53(12):5046–5054. doi:10.1128/Aac.00774-09

    Article  CAS  Google Scholar 

  10. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10(9):597–602. doi:10.1016/S1473-3099(10)70143-2

    Article  CAS  Google Scholar 

  11. Nordmann P, Poirel L, Walsh TR, Livermore DM (2011) The emerging NDM carbapenemases. Trends Microbiol 19(12):588–595. doi:10.1016/j.tim.2011.09.005

    Article  CAS  Google Scholar 

  12. Poirel L, Dortet L, Bernabeu S, Nordmann P (2011) Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother 55(11):5403–5407. doi:10.1128/AAC.00585-11

    Article  CAS  Google Scholar 

  13. Livermore DM, Mushtaq S, Warner M, Zhang JC, Maharjan S, Doumith M, Woodford N (2011) Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother 66(1):48–53. doi:10.1093/jac/dkq408

    Article  CAS  Google Scholar 

  14. Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase-producing enterobacteriaceae. Emerging Infect Dis 17(10):1791–1798. doi:10.3201/eid1710.110655

    Article  CAS  Google Scholar 

  15. Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11(5):355–362. doi:10.1016/S1473-3099(11)70059-7

    Article  Google Scholar 

  16. Hishinuma A, Ishida T (2012) New Delhi metallo -beta-lactamase-1 (NDM-1) producing bacteria. Nippon Rinsho 70(2):262–266

    Google Scholar 

  17. Zhang H, Hao Q (2011) Crystal structure of NDM-1 reveals a common beta-lactam hydrolysis mechanism. FASEB J 25(8):2574–2582. doi:10.1096/fj.11-184036

    Article  CAS  Google Scholar 

  18. Kim Y, Tesar C, Mire J, Jedrzejczak R, Binkowski A, Babnigg G, Sacchettini J, Joachimiak A (2011) Structure of apo- and monometalated forms of NDM-1–a highly potent carbapenem-hydrolyzing metallo-beta-lactamase. PLoS One 6(9):e24621. doi:10.1371/journal.pone.0024621

    Article  CAS  Google Scholar 

  19. Guo Y, Wang J, Niu G, Shui W, Sun Y, Zhou H, Zhang Y, Yang C, Lou Z, Rao Z (2011) A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell 2(5):384–394. doi:10.1007/s13238-011-1055-9

    Article  CAS  Google Scholar 

  20. Green VL, Verma A, Owens RJ, Phillips SE, Carr SB (2011) Structure of New Delhi metallo-beta-lactamase 1 (NDM-1). Acta Crystallogr, Sect F: Struct Biol Cryst Commun 67(Pt 10):1160–1164. doi:10.1107/S1744309111029654

    Article  CAS  Google Scholar 

  21. King D, Strynadka N (2011) Crystal structure of New Delhi metallo-beta-lactamase reveals molecular basis for antibiotic resistance. Protein Sci 20(9):1484–1491. doi:10.1002/pro.697

    Article  CAS  Google Scholar 

  22. Wang Z, Fast W, Valentine AM, Benkovic SJ (1999) Metallo-beta-lactamase: structure and mechanism. Curr Opin Chem Biol 3(5):614–622

    Article  CAS  Google Scholar 

  23. Park H, Brothers EN, Merz KM Jr (2005) Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. J Am Chem Soc 127(12):4232–4241. doi:10.1021/ja042607b

    Article  CAS  Google Scholar 

  24. Simona F, Magistrato A, Dal Peraro M, Cavalli A, Vila AJ, Carloni P (2009) Common mechanistic features among metallo-beta-lactamases: a computational study of Aeromonas hydrophila CphA enzyme. J Biol Chem 284(41):28164–28171. doi:10.1074/jbc.M109.049502

    Article  CAS  Google Scholar 

  25. Garau G, Bebrone C, Anne C, Galleni M, Frere JM, Dideberg O (2005) A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol 345(4):785–795. doi:10.1016/j.jmb.2004.10.070

    Article  CAS  Google Scholar 

  26. Xu D, Guo H, Cui Q (2007) Antibiotic deactivation by a dizinc beta-lactamase: mechanistic insights from QM/MM and DFT studies. J Am Chem Soc 129(35):10814–10822. doi:10.1021/ja072532m

    Article  CAS  Google Scholar 

  27. Sharma NP, Hajdin C, Chandrasekar S, Bennett B, Yang KW, Crowder MW (2006) Mechanistic studies on the mononuclear ZnII-containing metallo-beta-lactamase ImiS from Aeromonas sobria. Biochemistry 45(35):10729–10738. doi:10.1021/bi060893t

    Article  CAS  Google Scholar 

  28. Yanchak MP, Taylor RA, Crowder MW (2000) Mutational analysis of metallo-beta-lactamase CcrA from Bacteroides fragilis. Biochemistry 39(37):11330–11339

    Article  CAS  Google Scholar 

  29. Oelschlaeger P, Schmid RD, Pleiss J (2003) Insight into the mechanism of the IMP-1 metallo-beta-lactamase by molecular dynamics simulations. Protein Eng 16(5):341–350. doi:10.1093/protein/gzg049

    Article  CAS  Google Scholar 

  30. Carenbauer AL, Garrity JD, Periyannan G, Yates RB, Crowder MW (2002) Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis. BMC Biochem 3:4

    Article  Google Scholar 

  31. Wu SS, Xu DG, Guo H (2010) QM/MM studies of monozinc beta-lactamase CphA suggest that the crystal structure of an enzyme-intermediate complex represents a minor pathway. J Am Chem Soc 132(51):17986–17988. doi:10.1021/Ja104241g

    Article  CAS  Google Scholar 

  32. Suarez D, Brothers EN, Merz KM (2002) Insights into the structure and dynamics of the dinuclear zinc beta-lactamase site from Bacteroides fragilis. Biochemistry 41(21):6615–6630. doi:10.1021/Bi0121860

    Article  CAS  Google Scholar 

  33. Dal Peraro M, Vila AJ, Carloni P, Klein ML (2007) Role of zinc content on the catalytic efficiency of B1 metallo beta-lactamases. J Am Chem Soc 129(10):2808–2816. doi:10.1021/Ja0657556

    Article  CAS  Google Scholar 

  34. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. doi:10.1021/jm0306430

    Article  CAS  Google Scholar 

  35. Bounaga S, Laws AP, Galleni M, Page MI (1998) The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent beta-lactamase. Biochem J 331(Pt 3):703–711

    CAS  Google Scholar 

  36. Liang Z, Li L, Wang Y, Chen L, Kong X, Hong Y, Lan L, Zheng M, Guang-Yang C, Liu H, Shen X, Luo C, Li KK, Chen K, Jiang H (2011) Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS One 6(8):e23606. doi:10.1371/journal.pone.0023606

    Article  CAS  Google Scholar 

  37. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33(Web Server issue):W368–W371. doi:10.1093/nar/gki464

  38. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges—the resp model. J Phys Chem 97(40):10269–10280

    Article  CAS  Google Scholar 

  39. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. doi:10.1002/Jcc.20290

    Article  CAS  Google Scholar 

  40. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. doi:10.1002/jcc.20035

    Article  CAS  Google Scholar 

  41. Peters MB, Yang Y, Wang B, Fusti-Molnar L, Weaver MN, Merz KM (2010) Structural Survey Of Zinc-Containing Proteins And Development Of The ZINC AMBER Force Field (ZAFF). J Chem Theory Comput 6(9):2935–2947. doi:10.1021/Ct1002626

    Article  CAS  Google Scholar 

  42. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  43. Wang JM, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21(12):1049–1074

    Article  CAS  Google Scholar 

  44. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinf 65(3):712–725. doi:10.1002/Prot.21123

    Article  CAS  Google Scholar 

  45. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  46. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of cartesian equations of motion of a system with constraints—molecular-dynamics of N-Alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  47. Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  48. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  49. Maseras F, Morokuma K (1995) Imomm—a new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states. J Comput Chem 16(9):1170–1179

    Article  CAS  Google Scholar 

  50. Svensson M, Humbel S, Morokuma K (1996) Energetics using the single point IMOMO (integrated molecular orbital plus molecular orbital) calculations: choices of computational levels and model system. J Chem Phys 105(9):3654–3661

    Article  CAS  Google Scholar 

  51. Dapprich S, Komaromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct Theochem 461:1–21

    Article  Google Scholar 

  52. Vreven T, Morokuma K (2000) On the application of the IMOMO (integrated molecular orbital plus molecular orbital) method. J Comput Chem 21(16):1419–1432

    Article  CAS  Google Scholar 

  53. Vreven T, Mennucci B, da Silva CO, Morokuma K, Tomasi J (2001) The ONIOM-PCM method: combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution. J Chem Phys 115(1):62–72

    Article  CAS  Google Scholar 

  54. Vreven T, Morokuma K, Farkas O, Schlegel HB, Frisch MJ (2003) Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J Comput Chem 24(6):760–769. doi:10.1002/Jcc.10156

    Article  CAS  Google Scholar 

  55. Field MJ, Bash PA, Karplus M (1990) A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations. J Comput Chem 11(6):700–733

    Article  CAS  Google Scholar 

  56. Singh UC, Kollman PA (1986) A combined abinitio quantum-mechanical and molecular mechanical method for carrying out simulations on complex molecular-systems—applications to the Ch3cl + Cl− exchange-reaction and gas-phase protonation of polyethers. J Comput Chem 7(6):718–730

    Article  CAS  Google Scholar 

  57. Wang Z, Fast W, Benkovic SJ (1999) On the mechanism of the metallo-beta-lactamase from Bacteroides fragilis. Biochemistry 38(31):10013–10023. doi:10.1021/bi990356r

    Article  CAS  Google Scholar 

  58. Dal Peraro M, Vila AJ, Carloni P (2003) Protonation state of Asp120 in the binuclear active site of the metallo-beta-lactamase from Bacteroides fragilis. Inorg Chem 42(14):4245–4247. doi:10.1021/ic026059j

    Article  CAS  Google Scholar 

  59. Gilson HSR, Krauss M (1999) Structure and spectroscopy of metallo-lactamase active sites. J Am Chem Soc 121(30):6984–6989

    Article  CAS  Google Scholar 

  60. Diaz N, Suarez D, Merz KMM (2000) Zinc metallo-beta-lactamase from Bacteroides fragilis: a quantum chemical study on model systems of the active site. J Am Chem Soc 122(17):4197–4208

    Article  CAS  Google Scholar 

  61. Yang H, Aitha M, Hetrick AM, Richmond TK, Tierney DL, Crowder MW (2012) Mechanistic and spectroscopic studies of metallo-beta-lactamase NDM-1. Biochemistry 51(18):3839–3847. doi:10.1021/bi300056y

    Article  CAS  Google Scholar 

  62. Kaminskaia NV, Spingler B, Lippard SJ (2001) Intermediate in beta-lactam hydrolysis catalyzed by a dinuclear zinc(II) complex: relevance to the mechanism of metallo-beta-lactamase. J Am Chem Soc 123(27):6555–6563

    Article  CAS  Google Scholar 

  63. Gonzalez JM, Medrano Martin FJ, Costello AL, Tierney DL, Vila AJ (2007) The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold. J Mol Biol 373(5):1141–1156. doi:10.1016/j.jmb.2007.08.031

    Article  CAS  Google Scholar 

  64. Thomas PW, Zheng M, Wu S, Guo H, Liu D, Xu D, Fast W (2011) Characterization of purified New Delhi metallo-beta-lactamase-1. Biochemistry 50(46):10102–10113. doi:10.1021/bi201449r

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was support by grants from National High Technology Research and Development Program of China (2012AA020302), National Natural Science Foundation of China (20972174, 91029704, 21073034, 21210003 and 21021063), the Key Project of Chinese National Programs for Fundamental Research and Development (2009CB918502), the Natural Science Foundation of the Fujian Province (2010J05023), the Guangdong S&T Dept. (2010A030100006) and the “Key New Drug Creation and Manufacturing Program” (2013ZX09507-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Chen or Cheng Luo.

Additional information

Kongkai Zhu and Junyan Lu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1052 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, K., Lu, J., Liang, Z. et al. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1. J Comput Aided Mol Des 27, 247–256 (2013). https://doi.org/10.1007/s10822-012-9630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9630-6

Keywords

Navigation