Skip to main content
Log in

An approximation of the Cioslowski–Mixon bond order indexes using the AlteQ approach

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Fast and reliable prediction of bond orders in organic systems based upon experimentally measured quantities can be performed using electron density features at bond critical points (J Am Chem Soc 105:5061–5068, 1983; J Phys Org Chem 16:133–141, 2003; Acta Cryst B 61:418–428, 2005; Acta Cryst B 63:142–150, 2007). These features are outcomes of low-temperature high-resolution X-ray diffraction experiments. However, a time-consuming procedure of gaining these quantities makes the prediction limited. In the present work we have employed an empirical approach AlteQ (J Comput Aided Mol Des 22:489–505, 2008) for evaluation of electron density properties. This approach uses a simple exponential function derived from comparison of electron density, gained from high-resolution X-ray crystallography, and distance to atomic nucleus what allows calculating density distribution in time-saving manner and gives results which are very close to experimental ones. As input data AlteQ accepts atomic coordinates of isolated molecules or molecular ensembles (for instance, protein–protein complexes or complexes of small molecules with proteins, etc.). Using AlteQ characteristics we have developed regression models predicting Cioslowski–Mixon bond order (CMBO) indexes (J Am Chem Soc 113(42):4142–4145, 1991). The models are characterized by high correlation coefficients lying in the range from 0.844 to 0.988 dependently on the type of covalent bond, thereby providing a bonding quantification that is in reasonable agreement with that obtained by orbital theory. Comparative analysis of CMBOs approximated using topological properties of AlteQ and experimental electron densities has shown that the models can be used for fast determination of bond orders directly from X-ray crystallography data and confirmed that AlteQ characteristics can replace experimental ones with satisfactory extent of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lendvay G (1994) J Phys Chem 98:6098–6104

    Article  CAS  Google Scholar 

  2. Kiralj R, Kojic-Prodic B, Zinic M, Alihodzic S, Trinajstic N (1996) Acta Cryst B 52:823–837

    Article  Google Scholar 

  3. Blowers P, Masel RI (1998) J Phys Chem A102:9957–9964

    Article  Google Scholar 

  4. Zhan C-G, Wang Q-L, Xiong Y, Chen XJ (2000) J Mol Struct Theochem 531:33–37

    Article  CAS  Google Scholar 

  5. Nalewajski RF (2000) J Phys Chem A 104:11940–11951

    Article  CAS  Google Scholar 

  6. Lewis GN (1916) J Am Chem Soc 38:762–785

    Article  CAS  Google Scholar 

  7. Lewis GN (1923) Valence and structure of atoms and molecules. Chemical Catalogue Co., New York

    Google Scholar 

  8. Frankland E (1852) Phil Trans R Soc Lond 142:417–444

    Article  Google Scholar 

  9. Kekulé A (1857) Annalen der Chemie und Pharmacie 104:129–150

    Article  Google Scholar 

  10. Kekulé A (1858) Annalen der Chemie und Pharmacie 106:129–159

    Article  Google Scholar 

  11. Kekulé A (1866) Annalen der Chemie und Pharmacie 137:129–136

    Article  Google Scholar 

  12. Couper AS (1858) Annales de Chimie et de Physique 53:469–489

    Google Scholar 

  13. Thomson JJ (1897) Phil Mag S 5(44):293–316

    Article  Google Scholar 

  14. Bohr N (1913) Phil Mag S 6(26):1–24

    Article  Google Scholar 

  15. Bohr N (1913) Phil Mag S 6(26):476–502

    Article  Google Scholar 

  16. Bohr N (1913) Phil Mag S 6(26):857–875

    Article  Google Scholar 

  17. Burrau Ø (1927) Danske Vidensk Selsk Math-fys Medd 7(14):1–18

    Google Scholar 

  18. Burrau Ø (1927) Naturwissenschaften 15:16–17

    Article  CAS  Google Scholar 

  19. Heitler W, London F (1927) Zeitschrift für Physik 44:455–472

    Article  CAS  Google Scholar 

  20. Lennard-Jones JE (1929) Trans Faraday Soc 25:668–686

    Article  CAS  Google Scholar 

  21. Cioslowski J, Mixon ST (1991) J Am Chem Soc 113(42):4142–4145

    Google Scholar 

  22. Coulson CA (1939) Proc R Soc Lond A 169:413–428

    Article  CAS  Google Scholar 

  23. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  24. Mulliken RS (1955) J Chem Phys 23:1841–1846

    Article  CAS  Google Scholar 

  25. Mulliken RS (1955) J Chem Phys 23:2338–2342

    Article  CAS  Google Scholar 

  26. Mulliken RS (1955) J Chem Phys 23:2343–2346

    Article  CAS  Google Scholar 

  27. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  28. Mayer I (1983) Chem Phys Lett 97:270–274

    Article  CAS  Google Scholar 

  29. Mayer I (1986) Int J Quantum Chem 29:477–483

    Article  CAS  Google Scholar 

  30. Kaufman JJ (1970) Int J Quantum Chem 5:205–208

    Article  Google Scholar 

  31. Ham NS (1958) J Chem Phys 29:1229–1231

    Article  CAS  Google Scholar 

  32. Angyan JG, Loos M, Mayer I (1994) J Phys Chem 98:5244–5248

    Article  CAS  Google Scholar 

  33. Angyan JG, Rosta E, Surjan PR (1999) Chem Phys Lett 299:1–8

    Article  CAS  Google Scholar 

  34. Bridgeman AJ, Cavigliasso G, Ireland LR, Rothery JJ (2001) J Chem Soc Dalton Trans 14:2095–2108

    Article  Google Scholar 

  35. Mayer I, Knapp-Mohammady M, Suhai S (2004) Chem Phys Lett 389:34–38

    Article  CAS  Google Scholar 

  36. Lennard-Jones JE (1937) Proc R Soc Lond A 158:280–296

    Article  CAS  Google Scholar 

  37. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  38. Bader RFW, Slee TS, Cremer D, Kraka E (1983) J Am Chem Soc 105:5061–5068

    Article  CAS  Google Scholar 

  39. Howard ST, Lamarche O (2003) J Phys Org Chem 16:133–141

    Article  CAS  Google Scholar 

  40. Stash AI, Tanaka K, Shiozawa K, Makino H, Tsirelson VG (2005) Acta Cryst B 61:418–428

    Article  Google Scholar 

  41. TsirelsonVG, Bartashevich EV, Stash AI, Potemkin VA (2007) Acta Cryst B 63:142–150

  42. Potemkin VA, Grishina MA (2008) J Comput Aided Mol Des 22:489–505

    Article  CAS  Google Scholar 

  43. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comp Chem 14:1347–1363

    Article  CAS  Google Scholar 

  44. AIMPAC suite of software applications http://www.chemistry.mcmaster.ca/aimpac/imagemap/imagemap.htm. Accessed April 8, 2013

  45. Potemkin VA, Rykounov AA, Bartashevich EV, Pereyaslavskaya ES, Stash AI, Tsirelson VG (2006) IV National Crystal Chemistry Conference, 26–30 June 2006, Russia, Chernogolovka: Book of Abstracts, p 75

  46. Tsirelson VG, Stash AI, Potemkin VA, Rykounov AA, Shutalev AD, Zhurova EA, Zhurov VV, Pinkerton AA, Gurskaya GV, Zavodnik VE (2006) Acta Cryst B 62:676–688

    Article  CAS  Google Scholar 

  47. Potemkin VA, Rykounov AA, Stash AI, Tsirelson VG (2006) IV National Crystal Chemistry Conference, 26–30 June 2006, Russia, Chernogolovka: Book of Abstracts, p 130

  48. Hansen NK, Coppens P (1978) Acta Cryst A 34:909–921

    Google Scholar 

  49. Zhurova EA, Matta CF, Wu N, Zhurov VV, Pinkerton AA (2006) J Am Chem Soc 128:8849–8862

    Article  CAS  Google Scholar 

  50. Hibbs DE, Overgaard J, Howard ST, Nguyen TH (2005) Org Biomol Chem 3:441–447

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Vladimir G. Tsirelson and Dr. Adam I. Stash for the low-temperature high-accurate X-ray diffraction experiment data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Salmina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmina, E., Grishina, M.A. & Potemkin, V.A. An approximation of the Cioslowski–Mixon bond order indexes using the AlteQ approach. J Comput Aided Mol Des 27, 793–805 (2013). https://doi.org/10.1007/s10822-013-9677-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9677-z

Keywords

Navigation