
Lead Optimization Mapper: Automating free energy calculations
for lead optimization

Shuai Liu,
Department of Pharmaceutical Sciences and Department of Chemistry 147 Bison Modular
University of California, Irvine Irvine, CA 92697

Yujie Wu,
Schrödinger 120 West 45th Street 17th Floor, Tower 45 New York, NY 10036-4041

Teng Lin,
Schrödinger 120 West 45th Street 17th Floor, Tower 45 New York, NY 10036-4041

Robert Abel,
Schrödinger 120 West 45th Street 17th Floor, Tower 45 New York, NY 10036-4041

Jonathan P. Redmann,
Department of Computer Science University of New Orleans 2000 Lakeshore Drive New Orleans,
LA 70148

Christopher M. Summa,
Department of Computer Science University of New Orleans 2000 Lakeshore Drive New Orleans,
LA 70148

Vivian R. Jaber,
Department of Chemistry University of New Orleans 2000 Lakeshore Drive New Orleans, LA
70148

Nathan M. Lim, and
Department of Pharmaceutical Sciences and Department of Chemistry 147 Bison Modular
University of California, Irvine Irvine, CA 92697

David L. Mobley
Department of Pharmaceutical Sciences and Department of Chemistry 147 Bison Modular
University of California, Irvine Irvine, CA 92697

Department of Chemistry University of New Orleans 2000 Lakeshore Drive New Orleans, LA
70148

Abstract
Alchemical free energy calculations hold increasing promise as an aid to drug discovery efforts.
However, applications of these techniques in discovery projects have been relatively few, partly
because of the difficulty of planning and setting up calculations. Here, we introduce Lead
Optimization Mapper, LOMAP, an automated algorithm to plan efficient relative free energy
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calculations between potential ligands within a substantial library of perhaps hundreds of
compounds. In this approach, ligands are first grouped by structural similarity primarily based on
the size of a (loosely defined) maximal common substructure, and then calculations are planned
within and between sets of structurally related compounds. An emphasis is placed on ensuring that
relative free energies can be obtained between any pair of compounds without combining the
results of too many different relative free energy calculations (to avoid accumulation of error) and
by providing some redundancy to allow for the possibility of error and consistency checking and
provide some insight into when results can be expected to be unreliable. The algorithm is
discussed in detail and a Python implementation, based on both Schrödinger's and OpenEye's
APIs, has been made available freely under the BSD license.

Keywords
binding free energy; alchemical planning; molecular dynamics; molecular simulations; lead
optimization

1 Introduction
A good deal of early-stage drug discovery focuses on finding small molecules with suitable
affinity for a target binding site in a receptor, while simultaneously having good physical
and pharmacological properties to make orally available drugs[17, 49, 31]. The very earliest
stages of the process involve finding hits, small molecules which bind to the target receptor
relatively weakly. Then, these hits need to be turned into leads – molecules which have
suitable properties to potentially become drugs while also having sufficient affinity for the
target receptor [17, 31].

Ideally, computational methods could play a role in guiding early stage drug discovery,
which has traditionally been slow and time-consuming, filled with trial and error. Even the
process of finding molecules which bind with sufficient affinity to the target compound can
be slow and involve synthesizing hundreds of molecules [49, 64] resulting in substantial
costs, both in terms of material and in time spent[17, 58]. However, developing
computational tools with sufficient accuracy to reliably guide this discovery and
optimization process has proven challenging [11, 64]. Some of the most popular methods,
such as docking, while seeing widespread use, do not reliably yield any correlation between
predicted binding strength and experimental data [64]. The path to improve these methods
has often been unclear, in part because of the number of approximations made. So, while
computational methods are used in early stage drug discovery, in most discovery projects
they do not play a key role in guiding the process [16, 64, 46, 47]. More quantitative
methods could have a more dramatic impact on the early stage discovery process.

Some methods promise higher accuracy, and thus the potential for more of a role in guiding
early stage drug discovery. More rigorous methods for binding affinity prediction are
available, such as alchemical binding free energy techniques. These compute binding free
energies, or differences in binding free energies, from molecular simulations using
techniques based on perturbations [12, 33, 18, 54]. These techniques can be used to compute
both absolute binding free energies (ABFE) [8, 39, 13] or, more commonly, relative binding
free energies (RBFE) between related inhibitors 59, 12, 33, 11]. While in a number of cases
these techniques show considerable promise, a key obstacle hampering their more
widespread use has been the difficulty of setting up and performing these calculations,
which typically requires considerable expert intervention [9, 10]. So, while more rigorous
methods are available, they, too, do not typically help guide drug discovery[11].
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Here, our focus is on automating setup of alchemical relative free energy calculations,
allowing their application to large numbers of molecules with relatively little human
intervention in a discovery-type setting. We had previously worked only on small numbers
of molecules, and the overhead involved in setup was not a huge concern. However, an
abrupt collision with the realities faced every day by modelers in the pharmaceutical
industry helped us realize we need to do better, as we sought to use free energy calculations
to screen a modest library of potential inhibitors. Essentially, our problem (not unlike that
facing many early stage drug discovery projects) was this: Given a set of knowns, and a
library of tens to a few hundred potential other molecules of interest (some related to
knowns, some not related), predict which of this library might be best to follow up on
experimentally. The relevance of this task to drug discovery motivated the present
development of an automated setup tool for alchemical free energy calculations. The
importance of this problem has also similarly motivated a recent tool for automated setup of
endpoint free energy calculations[22].

In planning calculations of binding free energies for these compounds, we chose to compute
RBFE, comparing binding strengths of related compounds, rather than computing ABFE for
individual compounds. Several reasons motivated this choice. First, RBFE calculations
between related compounds are often considered more efficient than ABFE calculations
since they involve insertion and deletion of relatively few atoms, historically one of the most
computationally expensive steps [1, 68, 60]. Also, any protein motions or conformational
changes that happen on binding but are common to all ligands do not necessarily need to be
sampled, as can be seen from decomposing the thermodynamic cycle for binding into a
conformational change step and a binding step[36, 40]. Second, many molecules in our
initial set were charged, and free energy calculations involving changes in the system net
charge, as we would be doing in ABFE calculations, pose technical challenges that are not
yet well understood for systems more complicated than individual ions in water [26, 27, 23,
24]. Preserving the net charge of the system by doing relative free energy calculations
between molecules sharing the same net charge bypasses these problems.

It is worth noting that RBFE calculations do have one major limitation, in that they do
require knowledge of the likely binding mode of the compounds of interest. Such knowledge
will often be available in structure-based drug design projects, especially at the lead
optimization phase, but it is worth noting this requirement. This challenge is not unique to
RBFE calculations, though – the same issue also confronts most other techniques, including
ABFE calculations, which also must either take the likely binding mode as input, or at least
sample it adequately in the resulting simulations. However, in cases where there is
substantial uncertainty as to the compound's likely binding mode and multiple possibilities
are available, ABFE calculations may actually be preferable to RBFE calculations as
multiple binding modes can be difficult to handle within the RBFE framework [40]. Overall,
though, it is generally thought that RBFE calculations are easier and more efficient than
ABFE calculations.

While RBFE calculations avoid some problems with ABFE calculations, they do require a
planning step that is not needed for ABFE calculations: For a possible 50 compound lead
series, which of 50 × 49/2 = 1225 possible relative free energy calculations should we
actually do? Each relative free energy calculation compares binding of a pair of inhibitors,
so we need an automated way to decide which pairs of inhibitors we ought to plan relative
calculations between. Rather than doing 1225 RBFE calculations, we ought to be able to
span the entire library with just over 50 relative calculations, yielding relative free energies
for all of the molecules. Hence, our main focus here is development of a tool which can
automatically plan RBFE calculations spanning a library of compounds.
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2 LOMAP Method
2.1 Design goals

What criteria make for a good relative free energy calculation? That is, for a library of n
compounds, with n × (n – 1)/2 possible relative free energy calculations, which calculations
can we expect to actually work reasonably well? Some choices are clearly bad. For example,
if two molecules share absolutely no atoms in common, computing an RBFE between the
two requires subtraction of two ABFE calculations. Beyond this obvious consideration, we
specified a number of other design goals. These are broadly based on efficiency
considerations identified in the literature, and also focus to some extent on minimizing error
accumulation and building in ways to identify calculations which may be wrong due to poor
convergence.

2.1.1 Goal 1: Compounds being compared should be as similar as possible,
minimizing atomic deletions and insertions—Generally, we would prefer the
compounds being compared to be as chemically similar as possible, maximizing the
likelihood that they have the same or similar binding modes and minimizing the number of
atomic deletions and insertions required [1, 68, 60, 3, 25]. For example, changes in atomic
partial charge and atom type can be typically done using molecular dynamics simulations
involving relatively few intermediates (λ values) spanning between the two end states,
perhaps even as few as 5-11[29, 33, 30, 62]. Insertions of individual atoms can also be done
in a relatively straightforward way[25, 60, 3] but deletions or insertions of entire functional
groups may require as much as 2-3 times as many simulations[56, 57, 38, 1, 68, 60] because
of the need to spread out deletions/insertions across multiple simulations. Additionally, these
larger chemical changes typically lead to larger free energies, and hence the chance of larger
errors. So, a major goal is to plan relative calculations between the most similar molecules,
minimizing the number of atomic deletions and insertions.

It is worth noting, however, that from the standpoint of classical fixed-charge simulations,
“similar” means something slightly different than it typically does in drug discovery.
Specifically, in simulations, atom type changes are quite straightforward, and need not be
avoided. For example, changing benzene into chlorobenzene is easy – no atoms are deleted
or inserted, and there is only a modification of the atomic partial charges and minor changes
to some Lennard-Jones parameters. Similarly, changing a nitrogen-containing heterocycle
into a sulfur-containing one is straightforward as long as the pattern of connected atoms is
the same. So we are willing to grant considerable chemical leeway when deciding which
molecules are “similar”. Figure 1 shows an example of a variety of favorable
transformations beginning from 2-methylnaphthalene.

2.1.2 Goal 2: Rings should be preserved as much as possible—The larger the
functional group being deleted, the larger the potential problems with insertion/deletion, so
we prefer to avoid deletion and insertion of ring systems as much as possible (though this is
to be preferred over breaking or forming rings[53], as noted below). Additionally, deletion
of large bulky functional groups such as rings may provide a molecule with substantially
more room in a binding site, reducing the likelihood that it will remain in the expected
binding mode, and increasing the potential for problems adequately sampling potential
binding modes [40]. Hence, we choose to try and retain ring systems as much as possible.

2.1.3 Goal 3: Ligands being compared must share the same net charge—As
noted above, for technical reasons, relative free energy calculations involving changes of the
net charge of a system are to be expected to be unreliable. Specifically, changing one
charged ligand into a ligand of a different charge in the binding site leads to a contribution to
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the free energy due to the change in charge and its interaction with the surrounding solvent
dielectric, periodic copies of the system, and other factors [26, 27, 23, 24]. This would
cancel out if these contributions were the same in solvent, but in general they are not, partly
due to differences in system size and composition in the two environments. Therefore, we
choose to plan relative calculations only between subsets of ligands of the same net charge.
To allow estimation of the affinity of all compounds, selected compounds of known affinity
could be included in each subset, if such compounds are available (see Section 2.2.4). In our
view, RBFE calculations for chemical modifications which change the net charge (such as
addition of a carboxylic acid) must wait for algorithmic developments.

2.1.4 Goal 4: Portions of multi-ring systems can only be deleted if rings are
planar, and this should be avoided when possible—Alchemical free energy
calculations rely on a thermodynamic cycle, which must properly close to yield relative free
energies. When deleting atoms, we leave behind so-called “dummy atoms” which still have
bonds to the remainder of the molecule but do not interact with the system in any other
way[53]. For our thermodynamic cycle to close, the contribution of these dummy atoms to
the free energy of the system must be independent of the molecular environment. For
example, if we delete a methyl group in a binding site and in solution, the free energy of the
dummy methyl group must be the same in both environments. This criterion is met for
methyl groups, because a dummy methyl group, in our simulations, is a simple set of masses
and springs (and potentially torsions) with an energy that does not depend on the
environment. Thus, any free energy contributions from the dummy atoms in the binding site
rigorously cancel with contributions from the dummy atoms in solution, the other side of the
thermodynamic cycle. Thus, the bonded terms of dummy atoms make no contribution to the
relative free energy[5, 4].

In general, dummy atoms do not contribute to the relative free energy for all transformations
of groups of atoms into dummy atoms except when the geometry is modified due to the
influence of external forces [5, 4]. That is, cancellation will occur for any simple deletion of
singly-connected groups of atoms. However, bonded terms can in some cases contribute to
relative free energies under the influence of external forces[5, 4]. The main scenario in
which this can be expected to happen is for deletion of multiply connected groups. For
example, for mutation of cyclohexane into butane, dummy carbon atoms left behind from
cyclohexane can affect the free energy in at least two ways. First, since the dummy atoms
are still bonded to the butane atoms, they can affect the conformation of butane, altering
which states are preferred. Second, the free energy of the system of dummy atoms (masses
and springs) depends on the conformation of butane. If the preferred conformation of butane
is different in complex versus in solvent (such as due to contacts with the receptor), the free
energy of the dummy atoms will be different, producing a thermodynamic cycle which does
not properly close due to free energy contributions from these bonded terms. This has the
potential to happen whenever portions of rings (partial loops of atoms) are being deleted.
Practical complexities such as the necessity to break or form bonds when opening or closing
rings also make these cases difficult, as discussed elsewhere[5, 4].

So, we can avoid any contributions from the bonded terms of dummy atoms by avoiding
breaking or forming rings, but in some cases this may be necessary, as we explain below. If
ring breaking or forming is necessary, any contributions from dummy atoms will be small
whenever the conformation of the molecule, with its dummy atoms, is essentially the same
in water versus in complex, which will happen when the portion of the molecule being left
behind is rigid. For example, for a naphthalene to benzene transformation or similar (Figure
1), benzene is quite rigid, and has a very limited range of motion regardless of environment.
It is unlikely that a binding site could alter the conformation of benzene enough in order to
induce a significant change in the bonded energies of the naphthalene dummy atoms left
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behind. In such cases, there may still be a small contribution of bonded terms to the overall
relative free energy (that is, the thermodynamic cycle may not quite close formally) but we
believe the effect will be quite small. In contrast, a naphthalene to cyclohexane
transformation is much more risky, because the ring behind left behind now becomes
flexible (cyclohexane) and its bond lengths will change appreciably, substantially affecting
the bonded energies of the dummy atoms left behind from the additional ring system.

Here, then, our goal is to avoid inserting or deleting any partial rings as by so doing we can
avoid introducing any errors due to bonded contributions to relative free energies. However,
making this an absolute rule proves to be a bad idea. For example, if the set of molecules
contains one group consisting of benzene derivatives (potentially with R-groups attached in
various places) and another group based on the naphthalene scaffold, with two aromatic
rings (again potentially with R groups) linked together. If we abide by the rule of never
inserting or deleting partial rings, we will end up with two disconnected groups of molecules
and no way to compare their binding affinities. We propose that in such cases, where rigid
rings are being retained in a proposed partial ring deletion, it is acceptable to delete the
partial ring in question and assume that bonded contributions to the free energy cancel
(green arrow, Figure 1). So, our goal is to prefer relative free energy calculations which
preserve rings or avoid deleting partial rings, but when absolutely necessary, we will tolerate
deletion of partial rings as long as the components being left behind are essentially rigid.

2.1.5 Goal 5: Every molecule must be part of at least one closed
thermodynamic cycle—Free energy calculations can yield accurate free energies, or
results which are wildly wrong[8, 69, 14]. When the latter situation occurs, the source of
error can be difficult to discern. Assuming the system being modeled is representative of
experimental conditions, there are two main sources of error – poor convergence (i.e. the
free energies would have been correct if only enough simulation were done) or force field
inadequacies (i.e. additional simulation would have kept computed free energies the same
and only reduced the uncertainty). One way to check for convergence problems is to add
some redundancy into relative free energy calculations, introducing additional calculations
between some molecules and hence adding some cycles – closed paths around which
relative free energies must formally sum to zero. The difference from zero is called the cycle
closure error. This has been done in some relative free energy calculations in the past (for
example references [6, 19, 14, 61, 34, 44, 48, 63]) and provides a lower bound on the
amount of convergence error in the calculations. The literature suggests that this can be a
useful lower bound, in the sense that sometimes the cycle closure error is extremely large, as
much as several kcal/mol [6, 19, 14, 61, 34]. One frequently requested feature from
modelers in industry is the ability to know when calculations are expected to fail, and this
provides at least some information in that regard.

Overall, then, in order to provide some level of consistency checking and detection of
convergence errors, we require every molecule be part of at least one closed thermodynamic
cycle.

2.1.6 Goal 6: The set of planned calculations should be spanned by relatively
few calculations—When computing relative free energies across a large set of molecules,
we may need to combine results of multiple calculations, leading to an accumulation of
statistical error. To prevent these errors from becoming too large, we want to be able to get
between any two molecules with no more than a certain maximum number of calculations.
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2.2 Algorithm
Our main goal, then, is to construct a undirected graph where each node (or vertex) is a
compound of interest and each edge (or arc) a relative free energy computation for the two
flanking compounds. The edges should be assigned in a way to accomplish our design goals
mentioned above. Effective free energy computation typically requires that the two
molecules be sufficiently similar. So the edges (planned calculations) will depend heavily on
the computed similarities between molecules. In the following, we introduce our definition
of the similarity concept.

2.2.1 We want a similarity measurement to assess ease of computation—
Intuitively speaking, similarity refers to the “likeness” of two molecules and is one of the
factors that strongly influences the success of relative free energy calculations. For this
reason, similarity is a pivotal concept in our algorithm, and we define it as a scalar quantity
measuring the feasibility of a specific calculation. The higher the similarity, the more
feasible the calculation is. To measure similarity, we seek scores spanning a known range,
with the minimum representing total dissimilarity, and the maximum representing identity.
We choose the range [0, 1] to denote the similarity score. This choice of the range is
somewhat arbitrary but has several advantages described below.

This definition of similarity relates directly to how we construct the graph of planned
calculations. When the similarity between two compounds is high, we should have a higher
likelihood of connecting them by an edge. Often, the term “similarity” in the literature refers
to a simple measurement of chemical similarity. Here, however, we move past simple
chemical similarity and define similarity scores which ensure our design goals will be met.
Thus, we are more concerned with assessing the computational difficulty of particular
transformations than rigorously scoring chemical similarity. That is, we are more interested
in scoring computability. To appreciate this, consider a possible transformation between
methane and ethane, and another transformation between benzene and toluene. Chemically,
benzene and toluene are more similar, but in (in the absence of other sampling
considerations) RBFE calculations between both pairs are expected to require roughly the
same amount of computational resources because the mutation is identical for both pairs
(hydrogen to methyl). Thus, to measure computability, similarity scores should be very close
(if not identical) for methane-to-ethane versus benzene-to-toluene transformations.

To score efficiency of transformations based on a chemical similarity metric requires one
major assumption – that the most important contribution to a transformation's difficulty is
the magnitude of the transformation itself. This will certainly not always be the case. For
example, in a hypothetical receptor, one extremely small chemical modification
(introduction of a methyl at a particular location, for example) might introduce a dramatic
binding mode change or a new receptor conformation, posing substantial computational
challenges, while a much more dramatic modification (introducing a phenyl group
elsewhere in the molecule, for example) might do very little to the binding mode and
receptor conformation and be computationally straightforward. However, in the limit of
adequate binding mode and receptor sampling, transformation difficulty is an important
metric. Even when facing potential problems in binding mode and receptor sampling, if we
lack information on when to expect these effects, we should still be best served by focusing
on the difficulty of particular transformations.

2.2.2 Our similarity measurement starts with the size of the maximum
common substructure—A common theme of Goals 1-2 above (Section 2.1) is the desire
to minimize the number of atomic insertions and deletions, which we can build in to our
similarity scores by using the size of the maximum common substructure (MCS) as the
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foundation for scoring. An MCS search determines the largest common substructure shared
by two molecules. Once this is known, the number of atomic deletions or insertions is
immediately apparent, as is the change in any ring systems.

Here, we can make an MCS search better suit our needs by modifying it slightly.
Specifically, we treat all heavy atoms as equivalent in the search, since as noted in Goal 1
(Section 2.1) , changes in atom types are straightforward. Thus our search focuses on
molecular topologies rather than atom types. We also adjust the search to prefer substructure
matches which preserve ring systems as much as possible (Goal 2). The resulting modified
MCS search forms the foundation for our similarity scores.

Initial similarity scores are calculated based on the size of the MCS using the expression

(1)

where β is an arbitrary constant value, and NA, NB, and NMCS are the number of heavy
atoms of the two input molecules and of the MCS, respectively. Thus the term NA + NB −
2NMCS is the total number of atoms inserted or deleted in the transformation. We use an
exponential both to ensure that scores range between 0 and 1, and to strongly favor small
structural changes.

2.2.3 We construct similarity scores based on the modified MCS search, and
fold in other scoring rules—We want similarity score calculations to be easy to
automate and extend. As noted, the MCS similarity provides the foundation for our scores,
but we still have several other goals (Section 2.1) to achieve. The easiest way to do this is by
modifying our similarity score to include these aspects as well. Specifically, we need to also
ensure that compounds being compared share the same net charge, and avoid broken or
partial ring systems in our transformations. To include these factors in similarity scores, we
built a simple rule engine, which provides a mechanism to combine multiple requirements
(rules) or scores into a total. A rule here represents a regulation for similarity calculation,
and its application involves taking in a pair of input molecules and outputting a similarity
score based on the rule. The MCS search above can be recast in this format as a “maximum
common substructure rule” (MCSR), which computes the size of the MCS and outputs a
score in the range [0,1].

Our rule engine allows straightforward combination of multiple rules, typically by
multiplication to maintain the score range. In addition to the MCSR, we also apply a
“minimum number of common atoms rule” (MNCAR) which says that the two molecules
must share at least n heavy atoms to be regarded as similar. This simple rule outputs a score
of 1 if the number of common atoms is larger than n, and 0 otherwise. A composite of the
MCSR and MNCAR rules amounts to checking the number of heavy atoms in the MCS, and
if it is greater than n, returning a score based on the MCSR, otherwise returning 0. The score
of the composite rule is given by the simple formula: S = SMCSR × SMNCAR, and thus S
remains a number in the range [0, 1] . This approach is useful because it decouples rule
definitions from the scoring process, making it simple to add additional rules without
modifying existing ones. For example, to add a new “equal charge rule” (ECR), which,
given a molecule pair, outputs 1 if they have same the net charge and 0 if not, to we simply
calculate SECR (the score for the equal charge rule) and add it to the composite rule, which is
now using S = Sold × SECR. For more details, interested readers are encouraged to read the
LOMAP source code and the documentation therein.

Here, we are able to build Goals 1-4 (Section 2.1) into our similarity scores by forming a
single composite score out of just four specific rules. These goals are handled as follows:
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– Goal 1 (minimize atomic insertions and deletions): This is built into the definition of
the MCS score itself (and the corresponding rule, MCSR), as described above.

– Goal 2 (preserve rings as much as possible): This, too, is built into the MCSR.

– Goal 3 (preserve net charge): The equal charge rule (ECR) zeros similarity scores for
molecule pairs having different net charges.

– Goal 4 (avoid breaking rings, and only break them if planar): Here, we examine the
MCS to see whether it contains broken or partial ring systems. If it does, we delete
atoms in the broken or partial ring systems (and any unconnected moieties due to the
deletion). Since this rule is based on the deletion from the MCS, we call it trimmed-
MCSR (TMCSR) and calculate resulting score using the formula: S = exp [−2 × Ndel],
where β is the same constant value as in the MCS rule, and Ndel is the number of
deleted heavy atoms. Here, we actually assign two different TMCSR scores, one we call
“strict ring deletion” and a second we call “loose ring deletion”. In both approaches,
ring atoms in one molecule cannot be mapped to non-ring atoms in another molecule.
The difference is in handling of joined ring systems, as in Figure 1. In strict ring
deletion, if any component of a joined ring system no longer remains a ring after MCS
calculation, the entire ring system is deleted. In contrast, in loose ring deletion, ring
atoms in the MCS are kept if the portion of the ring system being left behind remains
planar. The latter allows transformations like naphthalene to benzene, while the former
does not.

Besides applying the above rules and constructing a composite rule by taking the product of
their scores, we also define a simple cutoff rule (the minimum similarity score, “MSS”):
Compare the similarity score with a threshold value, return 1 if it is greater than the
threshold, otherwise return 0. The goal of this rule is to ensure that calculations in the final
graph meet at least a certain minimum level of similarity. This rule is not used in
construction of the composite similarity scores, and we discuss its application below.

2.2.4 Calculation planning builds up a graph based on similarity scores—We
construct our graph of planned RBFE calculations following this procedure:

1. First, we calculate two sets of similarity scores from all pairs of the molecules. The
first set, called the loose scores, are obtained by execution of a composite rule
composed of the rules from Goals 1-3 and Goal 4 (loose). The second set, called
the strict scores, are obtained by execution of a composite rules composed of the
rules from Goals 1-3 and Goal 4 (strict). We store these two sets of scores in two
separate matrices. The strict scores are used throughout except where otherwise
noted.

2. We use the strict score matrix to assign an edge connecting any pair of nodes with a
final similarity score greater than zero, and then we remove all the edges with
scores less than the MSS cutoff, thus obtaining an initial graph. The following steps
will refine this initial graph and reduce the number of edges.

3. The initial graph often has several connected components – subgraphs that have no
connections between one other but within which there is a path between every pair
of nodes. The more similar molecules are, the more likely they will be within the
same connected component, and vice versa. We call all of the nodes within a
connected component a cluster. Within each cluster, there are, at this point,
typically far too many edges because most nodes are directly connected. We then
try to reduce the number of edges while ensuring the cluster continues to meet our
design goals (especially Goals 5-6, which are not encoded into the similarity
scores), which we can think of as constraints. Specifically, we want the minimum
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number of edges such that 1) every node should be in a cycle, and 2) the length of
the shortest path from any one node in the cluster to any other node in the cluster
should be less than a specified maximum distance (MAXDIST). For 1), we use
Paton's algorithm [45] to calculate the cycle basis [2], and use this to determine if
all the nodes are in a cycle. For 2), we use a breadth first search to calculate the
diameter of the cluster; from the diameter, we determine if the cluster meets the
distance constraint. Following this procedure, if the constraints are met, we then
sort and list the edges by their similarity score, from lowest to highest. We then
remove the least similar edge and check if the cluster still meets the constraints. If
it does, we then remove the next least similar edge, and so on, until we have
checked every edge and there are no remaining edges that can be removed without
violating the constraints. Thus, at the end of this process we obtain a graph with a
minimum number of connections, which we call the minimized graph.

4. At this point, different structural clusters still remain disconnected. Therefore, we
use the loose score matrix to merge clusters from the minimized graph into a final,
connected graph. This step has two passes. In the first pass, we connect as many of
the clusters as possible, while in the second pass we build in cycles between
clusters. The first pass connects clusters via a weighted maximum spanning tree.
For the second pass, we repeat the procedure used in the first pass, but omit any
edges created in pass one, thus creating a second weighted maximum spanning tree.
Thus, each cluster will now be connected via two routes, ensuring our goal about
cycles is met. It is important to note, however, that only connections with nonzero
similarity scores are allowed, so clusters of different net charge will remain
disconnected, as will any compounds or clusters which share no similarity with
other compounds.

The MSS rule described above is applied when planning all intra-cluster calculations, but it
is not applied at the stage of planning calculations spanning structural clusters, simply
because we wish to ensure a path between all compounds of the same net charge if at all
possible. Thus the final graph may have connections with similarity below the minimum
similarity score, though this will only happen if it is necessary, since there is still a
preference for connections with higher similarity scores.

Because MAXDIST (step 3) applies only within each structural cluster, the total number of
calculations across the final graph is actually larger than MAXDIST, in a way that depends
on the nature of the set of compounds. If there are m initial structural clusters, then the upper
bound on the maximum distance across the graph after step 4 is m × MAXDIST + (m − 1) =
m(MAXDIST + 1) − 1. In general we expect that for a typical congeneric series, the
maximum distance across the final graph will end up being MAXDIST since all molecules
will be in a single structural cluster. However, for more diverse compound libraries there
may be several distinct structural clusters (such as for the “trypsin” dataset in our Supporting
Information, which contains the Maybridge fragment library as a subset).

In some sets of planned RBFE calculations, it may be desirable to include a set of knowns –
compounds having known binding free energies – both to allow calculation of absolute
binding free energies of the unknowns by referring to the knowns, and as a consistency
check. Our code allows the user to provide a set of known compounds which are a subset of
the whole, and in this case, the maximum distance, MAXDIST, is set to apply to the
distance between any given unknown and some known compound. So the calculation
planning algorithm will ensure every compound is within MAXDIST of a known
compound. This actually reduces the number of required calculations (since now unknowns
are allowed to be more than MAXDIST apart).
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2.3 Our implementation is in Python
We implemented the above algorithm in Python 2.7. The third party libraries used here
include Schrödinger's [51] or OpenEye OEChem's APIs [43] for general molecular
manipulation, MCS searches, and modification of MCS output (such as removing partial
rings, etc.), networkx [20] for graph creation, traversal, and manipulation, OpenEye OEDe-
pict's APIs [43] for molecule depiction and graphviz [15] for visualization of the graph.

Our toolkit is available through SimTk as Lead Optimization Mapper, LOMAP, at https://
simtk.org/home/leadoptmap.

3 Simulation methods
3.1 Topology construction

While a tool for automatic setup of input files for relative free energy calculations is not
currently part of LOMAP, this will be a subject of future work. Here, we built a prototype
tool to construct GROMACS topologies for relative calculations in a single-topology,
explicit-intermediate manner4, essentially the simplest manner possible given LOMAP's
output of the common substructure. If one ligand is A, the second is B, and the MCSS is M,
we set up the transformations A → M and B → M. We are operating in a deletion-only
mode, where transformations always involve only deletion and/or mutation of atoms, never
insertion of new atoms. Free energy calculations for these transformations are conducted
both in vacuum and in water, and from the respective free energy differences we can obtain
the relative hydration free energy. Since the substructure M is based on either A or B, in
general it will differ in atom type from one of the two (for example, a “common” atom in a
ring might change type, or even a hydrogen atom might be changed into a carbon atom).
Thus A → B or B → M will in general involve atom type changes (with associated changes
in bonded atoms) as well as transformations of atoms into dummy atoms, and changes in
partial charges. We implemented setup of topologies via this approach in a Python tool
which will be further developed as part of a separate work

3.2 Simulation protocols
Here, relative free energy calculations were conducted with essentially the same protocol we
have used in the past for absolute hydration free energy calculations[28, 41], updated by
using the Parrinello-Rahman barostat for production simulations (switching from the
constant NVT ensemble to constant NPT) with a time constant of 10 picoseconds.
Simulations were conducted at 298.15 K, and a brief overview of our protocol is as follows.
We used Langevin dynamics, and production simulations were 5 ns in length, after 50 ps of
constant volume equilibration, 50 ps of constant pressure equilibration with the Berendsen
barostat and a time constant of 1 picosecond, and a further 50 ps of constant pressure
equilibration with the Parrinello-Rahman barostat and the same 10 picosecond time constant
used for production. Except as noted below, a time constant of 2 fs was used and bonds to
hydrogen were kept constrained. We used 20 λ values, with Coulomb and van der Waals
transformations conducted separately, with Coulomb λ values 0.0, 0.25, 0.5 and 1.0,
followed by other alchemical changes (van der Waals and bonded interactions) being made
according to the scheme λ = 0.0, 0.5, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
0.9, 0.95, 1.0. Soft core potentials were used for the van der Waals portion of the
transformation as previously. Simulations were conducted with a beta of GROMACS 4.6.2,
and because of a bug involving mass changes in this version of GROMACS, atomic masses
were left constant for changing atom types, as these are irrelevant for free energies. Free
energies were computed with MBAR[55]. Our starting molecule structures and force field
parameters were taken directly from our previous work on this set[35].
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Our protocol was modified slightly for those transformations in which a hydrogen atom was
mutated into a heavy atom upon transforming to the common substructure. Since bonds to
hydrogen were kept constrained in our standard protocol, but these transformations involve a
change in bond length, they would have been incorrect. Thus in these cases we turned off
constraints on hydrogen bonds, reduced the time step to 1 fs, and ran twice as many steps to
obtain the same total simulation length and capture the free energy of changing the bond
length.

4 Results
4.1 LOMAP calculation plans

In some sense, our key result here is LOMAP itself, which provides a general tool for
automatically planning RBFE calculations. It also outputs the trimmed MCS for each
planned calculation, making setup of the actual input files for RBFE calculations
straightforward in at least several common simulation packages (DESMOND[50, 7] and
GROMACS[21], for example). However, it is worth briefly assessing the output of LOMAP
on some test sets.

Here, we applied LOMAP to several different sets of molecules, and full detail test sets and
output are provided in the Supporting Information. Our main focus here is on a set of 50
Factor Xa (FXa) inhibitors taken from various literature sources[32, 66, 65, 52, 67], and the
LOMAP plan for the full set is shown in Figure 2 (with structures for a smaller subset in
Figure 3). We also tested a set of potential trypsin inhibitors (a fragment library which was
screened for binding to trypsin[42], as well as a substantial number of known trypsin
inhibitors), the SAMPL3 [41] set of small molecules, and our set of 504 fragment-like
molecules[37, 35]. Results for these are provided in the Supporting Information, and
statistics on the resulting graphs are shown in Table 1.

Here, we used LOMAP's default parameters, setting β = 0.1 and the similarity cutoff to 0.05.
These parameters correspond to a cutoff of (NA + NB − 2NMCS) = 30.0 in the MCS rule1.
This means that we will not consider any calculations involving 30 or more heavy atom
insertions or deletions. This specific choice is somewhat arbitrary and we plan on testing the
specific choice using detailed free energy calculations in the future. At this point, our choice
was made based on the assumption that for transformations larger than this, the expected
error in computed relative binding free energies will be large and/or convergence will be
extremely difficult. We also set MAXDIST to 6, again somewhat arbitrarily, knowing that
statistical error accumulates with each additional edge (and so larger MAXDIST will
introduce additional error) while at the same time smaller MAXDIST requires substantially
more computational effort. Again, systematic investigation of the optimal balance here will
require a large number of free energy calculations, and is an important topic for future work.

In the FXa set, LOMAP automatically divides the molecules into 3 separate groups with
different net charges. The total number of calculations is 65, only marginally larger than the
number of molecules in the set (50), and much smaller than the 1225 possible pairwise
combinations of molecules. In general, the final product (Figure 2) meets our design goals,
including building in closed cycles (Goal 5). (One specific cycle is highlighted via green
lines in Figure 2). However, one node, 20523 (red in Figure 2) is not in a cycle. This ends up
being because, due to the MSS rule, 20523 and 20577 are the only two members of one
structural cluster. While 20577 is similar enough to other molecules that it ultimately gets
connected to other nodes, 20523 is not, so it is left not belonging to a cycle. Similar cases

1assuming Ndel = 0; if it is not, the threshold is adjusted slightly.
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are found in the trypsin dataset we examined. The final maximum distance across the graph
is 9 (Table 1).

Because the full set of molecules is still relatively large, even for FXa, it is worth examining
a more detailed version of the map, along with chemical structures, to see whether the final
graph makes intuitive sense. Figure 3 focuses on the portion of the graph with compounds
having a net charge of +1. LOMAP automatically generates similar graphs, which contain
some additional information (such as the trimmed common substructures), though these are
too large to show here and samples are shown in the Supporting Information.

Some features of the FXa subset shown in Figure 3 highlight advantages of LOMAP over
planning calculations manually by inspection. For example, the blue node in the center is
selected by LOMAP to essentially serve as a hub (particularly highly connected), because it
is the structure common to the largest number of molecules in the series. Having this
scaffold as a hub dramatically reduces the distance between other compounds sharing the
same scaffold. Furthermore, a manual search might propose a calculation between the
compounds shown in orange circles. However, these, though sharing substantial similarity,
have bicyclic rings of different sizes, which (because we seek to avoid breaking rings)
would involve larger mutations – a transformation would involve deleting and reinserting
both bicyclic rings. Instead, our algorithm connects these compounds by passing through the
purple node, which involves modifying only one bicyclic ring at a time. Observations of this
type highlight how automatic planning algorithms are essential for large scale relative free
energy calculations, as planning at this level of detail would be impossible on large sets of
molecules since there are simply too many possibilities to consider (see the trypsin dataset in
the Supporting Information, for example).

Another important result of these calculations is the common substructure for each planned
calculation, and the mapping of ligand atoms onto this common substructure, which is also
an output. This information makes it simple to set up what we call “single topology, explicit
intermediate” binding free energy calculations (Figure 4). In these calculations, each ligand
is perturbed to the common substructure, both in the binding site and in solution. From the
difference in free energies one can obtain the relative binding free energy. These
calculations are conceptually (and algorithmically) typically very straightforward to set up,
since they involve simply turning any atoms being “deleted” into dummy atoms and making
any changes to atom type (and corresponding bond, angle, and torsion parameters) needed to
get to the common substructure. Unlike calculations going directly between ligands, these
do not require a mapping of atoms from one ligand onto the other, nor do they require
simultaneous transformations to and from dummy atoms, which simplifies setup. We are
working on automated tools to set up such calculations in some common simulation
packages, and plan to release these separately.

Automated planning of relative free energy calculations may not be necessary for very small
sets, but it becomes increasingly important as the set size grows. Would simpler algorithms
for planning calculations work as well as the one proposed here? Perhaps, but the most naive
approach of simply randomly connecting compounds appears not to be wise, at least for
diverse sets. An exhaustive test of feasibility as a function of chemical similarity and
similarity score is beyond the scope of this work, but as a crude test, we picked compound
pairs at random from our set and manually inspected them for similarity. We inspected 10
such pairs, shown in Supporting Information Figure 1. From the figure, it is fairly clear that
this selection process is far from ideal. Random selection proposes mutating piperazine into
n-butyl acetate, for example, a transformation which violates Goal 2 and in fact is probably
not possible in many simulation packages (since it involves breaking a ring, which would
change the exclusion interactions within the molecule). This ring breaking problem happens
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in two of the 10 transformations we examined (also tetrahydropyran to n-octane), whereas to
the eye, the solution is immediately obvious – mutate piperazine to tetrahydropyran and n-
octane to n-butyl acetate or similar. Aside from these two cases which are impractical, a
number of others are far from ideal – ptoluidine to 1,1,2-tetrachloroethane, for example, and
ethyl phenyl ether to iodomethane. While these transformations could work in principle,
there are other molecules which make better partners which are immediately apparent to the
eye. In fact, for this set of 10 pairs, there is only one pair which we would not remove based
on inspection – the transformation methyl trifluoroacetate to 2-methylpentan-2-ol, since
there is no clearly preferable partner for 2-methylpentan-2-ol. Other simple approaches
might work better than randomly pairing compounds. We also performed some tests looking
at pairing compounds by shape similarity, but these often resulted in molecule pairs without
sufficient topological similarity; for example, a flexible molecule which does not contain a
ring can have substantial shape similarity to a ring, despite the fact that ring breaking
transformations are not practical for us. One might object that a fragment library is an
especially stringent test, but the contents of this library are not that dissimilar to functional
groups which might be added or modified within a congeneric series, so this simple analysis
may provide some useful insight.

4.2 Validation on relative hydration free energies
While an extensive validation of our approach on binding free energy calculations is outside
the scope of this work, we here test it on relative hydration free energies of related
compounds. These calculations are relatively easy to converge, providing an excellent
opportunity for validation, since we already know correct (for the force field) hydration free
energies for a large number of small molecules[35]. These also provide a chance to test the
approach in the absence of concerns about adequate sampling of the environment.

Thus, we planned 763 hydration free energy calculations spanning our 504 molecule
fragment set, and selected 9 of these planned calculations for validation by relative free
energy calculation. Future work will look at computational efficiency of relative calculations
spanning this library as a function of similarity. However, such a large study is outside the
scope of this paper, so our focus here is simply on validation for a small number of
compounds. Thus, we ran single-topology relative hydration free energy calculations, and
compared computed free energies with those obtained from our previous absolute hydration
free energies[35]. Results are shown in Table 4, where uncertainties are reported as the
standard error in the mean. Here, our discrepancy from the previous results is always under
0.4 kcal/mol, despite calculated relative free energies spanning a range of −3.7 to 4.6 kcal/
mol. The difference between our LOMAP values and those previously calculated is also
within twice the standard error in the majority of cases, though not all. This is because the
error estimates for our previous calculations were too small by typically around 0.2 − 0.3
kcal/mol, because the transformations were done with constant volume production, with box
sizes chosen to match those at the end of the equilibration simulation. In instances (at
particular λ values) where the box size at the end of equilibration deviated from the correct
average box size, this resulted in a somewhat incorrect density at that particular lambda
value, introducing a small amount of noise which we have empirically observed to be up to
0.2 − 0.3 kcal/mol. Our more recent work has instead fixed the box size to yield the correct
density[28, 41], or (as here) switched to constant pressure production simulations, both of
which eliminate this noise. Thus, our relative hydration free energies from LOMAP are
consistent with our previously calculated hydration free energies.

It is worth noting that uncertainties in our computed relative hydration free energies are
quite small, and in many cases substantially smaller than those from our previous absolute
hydration free energy calculations. This is presumably because transforming one solute into
another is an easier (and more precise) calculation than computing the hydration free energy
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for an entire solute, and hence the resulting uncertainties are smaller. It also may be because
LOMAP has selected transformations which are particularly efficient, though tests of this
will be the subject of future work.

5 Discussion and conclusions
LOMAP provides an automatic way to plan relative binding free energy calculations, which
has been one major hur dle hampering more widespread application of these calculations to
problems in drug discovery. As input, it takes a set of potential ligands of interest, and
outputs a map of planned free energy calculations spanning the set with relatively few
transformations which are designed to be relatively efficient, based on the number of atomic
insertions and deletions required. This map also has several other features designed to aid
overall accuracy and provide consistency checking. Specifically, it keeps overall distance
across structural clusters below a specified threshold, and it builds in closed cycles of
mutations to allow consistency checking and provide additional information about when the
calculations may be performing poorly. Our approach also folds in several other major
considerations for accuracy, such as avoiding calculations between molecules of different
net charge, proper handling of partial ring deletions, and so on.

LOMAP provides a first effort at systematically planning efficient free energy calculations.
Much follow up work needs to be done to determine whether the choices make here actually
lead to the most efficient free energy calculations, or whether other choices are better. While
here, we have focused on minimizing the number of atomic deletions and insertions (which
is supported by the free energy literature) one might imagine other criteria might also be
important measures of the efficiency of potential relative free energy calculations. For
example, swapping one bioisostere for another might be preferable even if it results in a
larger number of deletions or insertions. Similarly, a transformation which preserves the
topological location of hydrogen bond donors and acceptors might be preferable over one
that does not, even if it involves a few more deletions and insertions. So far, we are not
aware of any efficiency data from free energy calculations which sheds light on these issues,
so the current implementation is likely a good starting point.

We believe further work on the issue of efficiency of different possible transformations is
needed. Hopefully the approach presented here will provide the foundation a systematic
approach to looking at efficiency as a function of transformation type, and we are beginning
some new work in this direction. Transformation efficiency can be measured by computing
a gold standard estimate of the relative free energy using extremely long simulations, and
then looking at how quickly computed relative free energies approach that estimate.
Transformations which are more efficient will in general more quickly approach the correct
relative free energy (and possibly require fewer alchemical intermediate states) than those
which are less efficient. This will be an interesting avenue for future work, and likely can
provide new insights to help improve LOMAP.

Since we hope this will be the foundation for much further development in the area, our
code is open source, under the BSD license. We have designed the graph planning algorithm
itself to be modular, taking a set of arbitrary similarity scores as input, so that the planning
component can be easily modified and extended. Also, our rule engine is designed to allow
easy incorporation of additional rules, and/or replacement of existing rules with new ones.

Overall, we believe this approach provides a promising way to begin automating the setup of
large scale relative binding free energy calculations. As noted above, with the output of
these calculations – the plan of calculations and the common substructure for each planned
calculation – it is simple to automate setup of input files for many common simulation
packages which perturb each ligand in a pair to the common substructure. Thus we hope that

Liu et al. Page 15

J Comput Aided Mol Des. Author manuscript; available in PMC 2014 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lead Optimization Mapper will pave the way to applying binding free energy calculations
on a larger scale in a wide range of applications.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Favorable mutations of 2-methylnaphthalene, based on our design goals. Black and green
arrows show allowed transformations from 2-methylnaphthalene. Red arrows show
transformations which are not allowed. Transformations marked by the black arrow are
considered the most favorable, and similarity (and hence favorability) decreases from left to
right, based on design Goal 1. Mutation from 2-methylnaphthalene to 1-butyl-4-
methylbenzene is prohibited (red arrow to left) because it would involve breaking a ring in a
bi-cycle (Goal 4). Mutation to toluene (green arrow) is allowed only under the “loose”
scoring scheme, and only if necessary to span the set (Section 2.2.4), while mutation to
methylcyclohexane is prohibited (red arrow to right) because it involves breaking a ring in a
bi-cycle and leaving a flexible ring behind (design Goal 4).
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Fig. 2.
Planned RBFE calculations for the FXa set. Ovals represent molecules, the number inside
nodes is molecule title, lines represent planned RBFE calculations. Green lines are a cycle
example. Every nodes are in cycle except the red one.
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Fig. 3.
Planned calculations for the charge +1 subset of the FXa test set, showing details of
molecular structures. Molecules highlighted in colors illustrate features of the output
discussed in the main text.
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Fig. 4.
Single topology, explicit intermediate free energy calculations. Here, these calculations
would be used to compare binding of 5-chloro-2-methylphenol and 2-ethylphenol. Fully
interacting atoms are shown in black with underlying shaded contours, while noninteracting
atoms (dummy atoms) are shown in gray with no shaded contours. The intermediate
(scaffold) is specified explicitly, at the bottom. At left, the chlorine atom and one hydrogen
are changed into dummy atoms, while at right, one hydrogen atom and a methyl group are
changed into dummy atoms. The two scaffolds at bottom differ in number of dummy atoms,
though these contributions cancel when computing free energies. The free energy
calculation involves turning the specified atoms into dummy atoms in both molecules.
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Table 1

Statistics of LOMAP plans for the sets examined

Dataset number of nodes (n)
potential edges ( n(n − 1)

2 ) planned edges final maximum distance

FXa 50 1225 65 9

Trypsin 576 165600 785 23

SAMPL3 36 630 50 6

Fragment 504 126756 763 6

Table 2 Shown are properties of LOMAP plans for relative free energy calculations spanning the different test sets used here. The number of nodes
(molecules) is shown, along with the number of possible free energy calculations between these molecules. Planned edges is the number of planned
calculations spanning the set, and the maximum final distance is the maximum distance between any pair of molecules across the final graph.
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Table 3

Computed relative hydration free energies

Compound pair Previous study[35] (kcal/mol) LOMAP (kcal/mol) Difference (kcal/mol)

1,1,1,2-tetrachloroethane to 2,2-dimethylbutane –2.62 ± 0.15 –2.42 ± 0.03 0.20 ± 0.15

1,1,1-trichloroethane to 2,2-dimethylpentane –2.21 ± 0.17 –2.15 ± 0.03 0.06 ± 0.17

1,1,1-trifluoro-2,2,2-trimethoxyethane to 2-chloro-1,1,1-trimethoxyethane 1.31 ± 0.13 1.04 ± 0.04 –0.27 ± 0.13

1,2,3-trichlorobenzene to 2,3-dimethylphenol 4.60 ± 0.11 4.29 ± 0.04 –0.31 ± 0.12

1,2,3,4-tetrachlorobenzene to 2,6-dimethylaniline 4.49 ± 0.27 4.55 ± 0.04 0.06 ± 0.27

1,2,3,5-tetrachlorobenzene to 1,3,5-trichlorobenzene –0.21 ± 0.24 –0.47 ± 0.03 –0.26 ± 0.24

1,2,4,5-tetrachlorobenzene to 1,2,4-trichlorobenzene 0.12 ± 0.42 0.43 ± 0.03 0.31 ± 0.42

1-chloro-2,2,2-trifluoroethane to 2,2,2-trifluoroethanol 4.42 ± 0.06 4.11 ± 0.04 –0.31 ± 0.07

1-methyl-imidazole to 1-methyl pyrrole –3.80 ± 0.04 –3.74 ± 0.04 0.06 ± 0.05

Table 4 Shown are relative hydration free energies for selected compound pairs, computed both from absolute hydration free energies reported in a
previous study, and from relative free energy calculations set up via LOMAP here.
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