Skip to main content
Log in

Structural functionality, catalytic mechanism modeling and molecular allergenicity of phenylcoumaran benzylic ether reductase, an olive pollen (Ole e 12) allergen

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Isoflavone reductase-like proteins (IRLs) are enzymes with key roles in the metabolism of diverse flavonoids. Last identified olive pollen allergen (Ole e 12) is an IRL relevant for allergy amelioration, since it exhibits high prevalence among atopic patients. The goals of this study are the characterization of (A) the structural-functionality of Ole e 12 with a focus in its catalytic mechanism, and (B) its molecular allergenicity by extensive analysis using different molecular computer-aided approaches covering (1) physicochemical properties and functional-regulatory motifs, (2) sequence analysis, 2-D and 3D structural homology modeling comparative study and molecular docking, (3) conservational and evolutionary analysis, (4) catalytic mechanism modeling, and (5) sequence, structure-docking based B-cell epitopes prediction, while T-cell epitopes were predicted by inhibitory concentration and binding score methods. Structural-based detailed features, phylogenetic and sequences analysis have identified Ole e 12 as phenylcoumaran benzylic ether reductase. A catalytic mechanism has been proposed for Ole e 12 which display Lys133 as one of the conserved residues of the IRLs catalytic tetrad (Asn-Ser-Tyr-Lys). Structure characterization revealed a conserved protein folding among plants IRLs. However, sequence polymorphism significantly affected residues involved in the catalytic pocket structure and environment (cofactor and substrate interaction-recognition). It might also be responsible for IRLs isoforms functionality and regulation, since micro-heterogeneities affected physicochemical and posttranslational motifs. This polymorphism might have large implications for molecular differences in B- and T-cells epitopes of Ole e 12, and its identification may help designing strategies to improve the component-resolving diagnosis and immunotherapy of pollen and food allergy through development of molecular tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moummou H, Kallberg Y, Tonfack LB, Persson B, van der Rest B (2012) BMC Plant Biol 12:219

    Article  CAS  Google Scholar 

  2. Banerjee S, Li Y, Wang Z, Sarkar FH (2008) Cancer Lett 269:226–242

    Article  CAS  Google Scholar 

  3. Lewis NG, Davin LB (1999) In: Barton DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry. Elsevier, London

    Google Scholar 

  4. Dixon RA (1999) In: Sankawa U (ed) Comprehensive natural products chemistry. Elsevier, Oxford

  5. Taylor LP, Grotewold E (2005) Curr Opin Plant Biol 8:317–323

    Article  CAS  Google Scholar 

  6. Buer CS, Imin N, Djordjevic MA (2010) J Integr Plant Biol 52:98–111

    Article  CAS  Google Scholar 

  7. van Eldik GJ, Ruiter RK, Colla PH, van Herpen MM, Schrauwen JA, Wullems GJ (1997) Plant Mol Biol 33:923–929

    Article  Google Scholar 

  8. Vieths S, Frank E, Scheurer S, Meyer HE, Hrazdina G, Haustein D (1998) Scand J Immunol 47:263–267

    Article  CAS  Google Scholar 

  9. Lers A, Burd S, Lomaniec E, Droby S, Chalutz E (1998) Plant Mol Biol 36:847–856

    Article  CAS  Google Scholar 

  10. Gang DR, Kasahara H, Xia ZQ, Mijnsbrugge KV, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) J Biol Chem 274:7516–7527

    Article  CAS  Google Scholar 

  11. Karamloo F, Schmitz N, Scheurer S, Foetisch K, Hoffmann A, Haustein D, Vieths S (1999) J Allergy Clin Immunol 104(5):991–999

    Article  CAS  Google Scholar 

  12. Suzuki S, Umezawa T (2007) J Wood Sci 53:273–284

    Article  CAS  Google Scholar 

  13. Dinkova-Kostova AT, Gang DR, Davin LB, Bedger DL, Chu A, Lewis NG (1996) J Biol Chem 271:29473–29482

    Article  CAS  Google Scholar 

  14. Fujita M, Gang DR, Davin LB, Lewis NG (1999) J Biol Chem 274:618–627

    Article  CAS  Google Scholar 

  15. Paiva NL, Edwards R, Sun Y, Hrazdina G, Dixon RA (1991) Plant Mol Biol 17:653–667

    Article  CAS  Google Scholar 

  16. Tiemann K, Inzé D, Van Montagu M, Barz W (1991) Eur J Biochem 200:751–757

    Article  CAS  Google Scholar 

  17. Paiva NL, Sun Y, Dixon RA, Van Etten HD, Hrazdina G (1994) Arch Biochem Biophys 312:501–510

    Article  CAS  Google Scholar 

  18. Wang X, He X, Lin J, Shao H, Chang Z, Dixon RA (2006) J Mol Biol 358:1341–1352

    Article  CAS  Google Scholar 

  19. Min T, Kasahara H, Bedgar DL, Youn B, Lawrence PK, Gang DR, Halls SC, Park H, Hilsenbeck JL, Davin LB, Lewis NG, Kang C (2003) J Biol Chem 278:50714–50723

    Article  CAS  Google Scholar 

  20. Will-Karp M, Santeliz J, Karp CL (2001) Nat Rev Immunol 1:69–75

    Article  Google Scholar 

  21. Blanca M, Boulton P, Brostoff J, González-Reguera I (1983) Clin Allergy 13:473–478

    Article  CAS  Google Scholar 

  22. Hamman-Khalifa A, Castro AJ, Jimenez-Lopez JC, Rodríguez-García MI, Alché JD (2008) BMC Plant Biol 8:10

    Article  Google Scholar 

  23. Jimenez-Lopez JC, Morales S, Castro AJ, Volkmann D, Rodríguez-García MI, Alché JD (2012) PLoS ONE 7(2):e30878

    Article  CAS  Google Scholar 

  24. Jimenez-Lopez JC, Rodríguez-García MI, Alché JD (2013) PLoS ONE 8(10):e76066. doi:10.1371/journal.pone.0076066

  25. Salamanca G, Rodriguez R, Quiralte J, Moreno C, Pascual CY, Barber D, Villalba M (2010) FEBS J 277:2729–2739

    Article  CAS  Google Scholar 

  26. Jimenez-Lopez JC, Kotchoni SO, Rodríguez-García MI, Alché JD (2012) J Mol Model 18:4965–4984

    Article  CAS  Google Scholar 

  27. Wu S, Zhang Y (2010) Structure 18:858–867

    Article  CAS  Google Scholar 

  28. Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, Shen Y, Li K, Zheng J, Vakili P, Paschalidis IC, Vajda S (2010) Proteins 78:3124–3130

    Article  CAS  Google Scholar 

  29. Kyte J, Doolittle RF (1982) J Mol Biol 157:105–132

    Article  CAS  Google Scholar 

  30. Welling GW, Weijer WJ, van der Zee R, Welling-Wester S (1985) FEBS Lett 188:215–218

    Article  CAS  Google Scholar 

  31. Parker JMR, Guo D, Hodges RS (1986) Biochemistry 25:5425–5431

    Article  CAS  Google Scholar 

  32. Hopp TP, Woods KR (1981) Proc Natl Acad Sci USA 78:3824–3828

    Article  CAS  Google Scholar 

  33. Esteve C, Montealegre C, Marina ML, Garcia MC (2012) Talanta 92:1–14

    Article  CAS  Google Scholar 

  34. Louie GV, Baiga TJ, Bowman ME, Koeduka T, Taylor JH et al (2007) PLoS ONE 2:e993

    Article  Google Scholar 

  35. Levin I, Schwarzenbacher R, McMullan D, Abdubek P, Ambing E et al (2004) Proteins 56:629–633

    Article  CAS  Google Scholar 

  36. Arcangeli C, Cantale C, Galeffi P, Rosato V (2008) J Struct Biol 164:119–133

    Article  CAS  Google Scholar 

  37. Bovy A, de Vos R, Kemper M, Schijlen E, Almenar M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos C, van Tunen A (2002) Plant Cell 14:2509–2526

    Article  CAS  Google Scholar 

  38. Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, Souza A, Geoffroy P, Heintz D, Krahn D, Kaiser M, Kombrink E, Heitz T, Suh DY, Legrand M, Douglas CJ (2010) Plant Cell 22:4045–4066

    Article  CAS  Google Scholar 

  39. Tanaka N, Nonaka T, Nakanishi M, Deyashiki Y, Hara A, Mitsui Y (1996) Structure 4:33–45

    Article  CAS  Google Scholar 

  40. Shao H, Dixon RA, Wang X (2007) J Mol Biol 369:265–276

    Article  CAS  Google Scholar 

  41. Shimada N, Sato S, Akashi T, Nakamura Y, Tabata S, Ayabe S-I, Aoki T (2007) DNA Res 14:25–36

    Article  CAS  Google Scholar 

  42. Gutierrez-Gonzalez JJ, Wu X, Gillman JD, Lee JD, Zhong R, Yu O, Shannon G, Ellersieck M, Nguyen HT, Sleper DA (2010) BMC Plant Biol 10:105

  43. Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D (1995) Biochem 34:6003–6013

    Article  CAS  Google Scholar 

  44. Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jornvall H (2003) Chem Biol Interact 143–144:247–253

    Article  Google Scholar 

  45. Lesk AM (1995) Curr Opin Struct Biol 5:775–783

    Article  CAS  Google Scholar 

  46. Grimm C, Maser E, Mobus E, Klebe G, Reuter K, Ficner R (2000) J Biol Chem 275:41333–41339

    Article  CAS  Google Scholar 

  47. Ghosh D, Sawicki M, Pletnev V, Erman M, Ohno S, Nakajin S, Duax WL (2001) J Biol Chem 276:18457–18463

    Article  CAS  Google Scholar 

  48. Zubieta C, Ross JR, Koscheski P, Yang Y, Pichersky E, Noel JP (2003) Plant Cell 15:1704–1716

    Article  CAS  Google Scholar 

  49. Sakuraba H, Kawai T, Yoneda K, Ohshima T (2011) Arch Biochem Biophys 512(2):126–134

    Article  CAS  Google Scholar 

  50. Kavanagh KL, Jörnvall H, Persson B, Oppermann U (2008) Cell Mol Life Sci 65(24):3895–3906

    Article  CAS  Google Scholar 

  51. Karamloo F, Wangorsch A, Kasahara H, Davin LB, Haustein D, Lewis NG, Vieths S (2001) Eur J Biochem 268:5310–5320

    Article  CAS  Google Scholar 

  52. Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B (2008) PLoS Comput Biol 4:e1000048

  53. Dall’Antonia F, Gieras A, Devanaboyina SC, Valenta R, Keller W (2011) J Allergy Clin Immunol 128(4):872–879

    Article  Google Scholar 

  54. García-Casado G, Pacios LF, Díaz-Perales A, Sánchez-Monge R, Lombardero M, García-Selles FJ, Polo F, Barber D, Salcedo G (2003) J Allergy Clin Immunol 112(3):599–605

    Article  Google Scholar 

  55. Ball T, Fuchs T, Sperr WR, Valent P, Vangelista L, Kraft D, Valenta R (1999) FASEB J 13:1277–1290

    CAS  Google Scholar 

  56. Midoro-Horiuti T, Schein CH, Mathura V, Braun W, Czerwinski EW, Togawa A, Kondo Y, Oka T, Watanabe M, Goldbluma RM (2006) Mol Immunol 43(6):509–518

    Article  CAS  Google Scholar 

  57. Jimenez-Lopez JC, Gachomo WE, Ariyo O, Baba-Moussa L, Kotchoni SO (2012) Mol Biol Rep 39(1):123–130

    Article  CAS  Google Scholar 

  58. Radauer C, Willerroiderw M, Fuchs H, Hoffmann K, Thalhamerw J, Ferreira F, Scheiner O, Breiteneder H (2006) Clin Exp Allergy 36:920–929

    Article  CAS  Google Scholar 

  59. Jahn-Schmid B, Kelemen P, Himly M, Bohle B, Fischer G, Ferreira F, Ebner C (2002) J Immunol 169:6005–6011

    CAS  Google Scholar 

  60. Oezguen N, Zhou B, Negi SS, Ivanciuc O, Schein CH, Labesse G, Braun W (2008) Mol Immunol 45:3740–3747

    Article  CAS  Google Scholar 

  61. Wolff N, Yannai S, Karin N, Levy Y, Reifen R, Dalal I, Cogan U (2004) J Allergy Clin Immunol 114:1151–1158

    Article  CAS  Google Scholar 

  62. Brinda KV, Vishveshwara S (2005) BMC Bioinformatics 6:296

    Article  CAS  Google Scholar 

  63. Sinha N, Mohan S, Lipschultz CA, Smith-Gill SJ (2002) Biophys J 83:2946–2968

    Article  CAS  Google Scholar 

  64. Karamloo F, Schmitz N, Scheurer S, Foetisch K, Hoffmann A, Haustein D, Vieths S (1999) J Allergy Clin Immunol 104:991–999

    Article  CAS  Google Scholar 

  65. Custovic A, Nicolaou N (2011) J Allergy Clin Immunol 127:631–632

    Article  Google Scholar 

  66. Bock SA, Munoz-Furlong A, Sampson HA (2007) J Allergy Clin Immunol 119:1016–1018

    Article  Google Scholar 

  67. Mittag D, Akkerdaas J, Ballmer-Weber BK, Vogel L, Wensing M, Becker WM, Koppelman SJ, Knulst AC, Helbling A, Hefle SL, Van Ree R, Vieths S (2004) J Allergy Clin Immunol 114:1410–1417

    Article  CAS  Google Scholar 

  68. Nicolaou N, Custovic A (2011) Curr Opin Allergy Clin Immunol 11:222–228

    Article  CAS  Google Scholar 

  69. Asarnoj A, Nilsson C, Lidholm J, Glaumann S, Ostblom E, Hedlin G, van Hage M, Lilja G, Wickman M (2012) J Allergy Clin Immunol 130(2):468–472

    Article  CAS  Google Scholar 

  70. Levy DA, Charpin D, Pecquet C, Leynadier F, Vervtoet D (1992) Allergy 47:579–587

    Article  CAS  Google Scholar 

  71. Düring K (1993) Plant Mol Biol 23:209–214

    Article  Google Scholar 

  72. Chen Z, Cremer R, Posch A, Raulf-Heimsoth M, Rihs HP, Baur X (1997) J Allergy Clin Immunol 100:684–693

    Article  CAS  Google Scholar 

  73. Chen Z, van Kampen V, Raulf-Heimsoth M, Baur X (1996) Clin Exp Allergy 26:406–415

    Article  CAS  Google Scholar 

  74. Schuler S, Ferrari G, Schmid-Grendelmeier P, Harr T (2013) Clin Transl Allergy 3(1):11

    Article  CAS  Google Scholar 

  75. Wagner S, Breiteneder H (2002) Biochem Soc Trans 30(6):935–940

    Article  CAS  Google Scholar 

  76. Wopfner N, Gadermaier G, Egger M, Asero R, Ebner C, Jahn-Schmid B, Ferreira F (2005) Int Arch Allergy Immunol 138(4):337–346

    Article  CAS  Google Scholar 

  77. Jahn-Schmid B, Hauser M, Wopfner N, Briza P, Berger UE, Asero R, Ebner C, Ferreira F, Bohle B (2012) J Immunol 188(3):1559–1567

    Article  CAS  Google Scholar 

  78. Jornvall H, Persson M, Jeffery J (1981) Proc Natl Acad SciUSA 78:4226–4230

    Article  CAS  Google Scholar 

  79. Hoffmann F, Maser E (2007) Drug Metab Rev 39:87–144

    Article  CAS  Google Scholar 

  80. Kallberg Y, Oppermann U, Jornvall H, Persson B (2002) Protein Sci 11:636–641

    Article  CAS  Google Scholar 

  81. Mauge C, Granier T, Langlois d’Estaintot B, Gargouri B, Manigand C, Schmitter JM, Chaudière J, Gallois B (2010) J Mol Biol 397:1079–1091

    Article  CAS  Google Scholar 

  82. Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jornvall H, Oppermann U (2002) J Biol Chem 277(28):25677–25684

    Article  CAS  Google Scholar 

  83. Swanson BA, Frey PA (1993) Biochem 32:13231–13236

    Article  CAS  Google Scholar 

  84. Tohge T, Watanabe M, Hoefgen R, Fernie AR (2013) Crit Rev Biochem Mol Biol 48(2):123–152

    Article  CAS  Google Scholar 

  85. Limem I, Guedon E, Hehn A, Bourgaud F, Chekir Ghedira L, Engasser JM, Ghoul M (2008) Process Biochem 43:463–479

    Article  CAS  Google Scholar 

  86. Liu CJ, Blount JW, Steele CL, Dixon RA (2002) Proc Natl Acad Sci USA 99:14578–14583

    Article  CAS  Google Scholar 

  87. Julien Racle JO, Hatzimanikatis V (2012) Biotechnol Bioeng 109:2127–2133

    Article  Google Scholar 

  88. Brunk E, Neri M, Tavernelli I, Hatzimanikatis V, Rothlisberger U (2012) Biotechnol Bioeng 109:572–582

    Article  CAS  Google Scholar 

  89. Soh KC, Hatzimanikatis V (2010) Trends Biotechnol 28:501–508

    Article  CAS  Google Scholar 

  90. Miskovic L, Hatzimanikatis V (2010) Trends Biotechnol 28:391–397

    Article  CAS  Google Scholar 

  91. Xu P, Bhan N, Koffas MAG (2013) Curr Opin Biotechnol 24(2):291–299

    Article  CAS  Google Scholar 

  92. Kim MI, Kwon SJ, Dordick JS (2009) Org Lett 11:3806–3809

    Article  CAS  Google Scholar 

  93. Kwon SJ, Lee M-Y, Ku B, Sherman DH, Dordick JS (2007) ACS Chem Biol 2:419–425

    Article  CAS  Google Scholar 

  94. Bhan N, Xu P, Koffas MAG (2013) Curr Opin Biotechnol. doi:10.1016/j.copbio.2013.02.019

    Google Scholar 

Download references

Acknowledgments

This study was supported by the following European Regional Development Fund co-financed Grants: MCINN BFU 2004-00601/BFI, BFU 2008-00629, BFU2011-22779, CICE (Junta de Andalucía) P2010-CVI15767, P2010-AGR6274 and P2011-CVI-7487, and by the coordinated project Spain/Germany MEC HA2004-0094. JCJ-L thanks Spanish CSIC and the European Marie Curie research program (FP7-PEOPLE-2011-IOF) for his I3P-BPD-CSIC and PIOF-GA-2011-301550 Grants, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose C. Jimenez-Lopez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2013_9686_MOESM1_ESM.pdf

Figure S1. Ole e 12 modeling assessment. (a) Ramachandran plot of the modeled Ole e 12 protein. (b) ‘Z-plot’ and (c) ‘e-plot’ of Ole e 12 protein model. (d) Energy level distribution representation in the Ole e 12 protein model. The amino acid colors are clamped at red (highest energy) or blue (lowest energy). Supplementary material 1 (PDF 117 kb)

10822_2013_9686_MOESM2_ESM.pdf

Figure S2. Chemical structures of flavonoids. a) Diagram of the natural polyphenol classification. b) Examples of pollen polyphenols (flavonoids) with significant antioxidant activity by substitution of radicals R1, R2, R3, R4 and R5. c) Basic structures of flavonoid subclasses. Supplementary material 2 (PDF 73 kb)

10822_2013_9686_MOESM3_ESM.pdf

Figure S3. Diagram representation of highly antigenicity regions in olive Ole e 12 protein. Eight areas of high antigenicity are highlighted with gray color shadows, as a result of the combination of paramenters such as hydrophobicity (or hydrophilicity), Kyte-Doolitte scale and Hopp-Woods scale; antigenicity, Welling method and Parker method. Surface accessibility of amino acids, 30% and 50% (discontinue blue and red line, respectively). Supplementary material 3 (PDF 156 kb)

Supplementary material 4 (PDF 90 kb)

Supplementary material 5 (PDF 14 kb)

Supplementary material 7 (PDF 11 kb)

Supplementary material 8 (PDF 54 kb)

Supplementary material 9 (PDF 56 kb)

Glossary

Å

Armstrong

ANOLEA

Atomic non-local environment assessment

ASA

Absolute surface area

Carbon alpha

CATH

Protein structure classification

CDART

Conserved domain architecture retrieval tool

CDD

Conserved domain database

ExPASy

Expert protein analysis system

FASTA

Fast alignment

FFT

Fast fourier transform

G-factor

Goodness factor

GETAREA

Solvent accessible surface area or solvation energy

GO terms

The gene ontology project

GRAVY

Grand average of hydropathicity

GROMOS96

Force field for molecular dynamics simulation

HLA

Human leukocyte antigen

IC50

Inhibitory concentration

IFR

Isoflavone reductase

IRLs

Isoflavone reductase-like proteins

Jscore

Jury score

MHC

Major histocompatibility complex

NCBI

National center for biotechnology information

NJ

Neighbor-joining

NMR

Nuclear magnetic resonance

PB

Electrostatic Poisson-Boltzmann

PCBER

Phenylcoumaran benzylic ether reductase

PDB

Protein data bank

PIP-Family

PCBER, IFR and PRL family

PIRSF

Family classification system at the protein information resource

PLR

Pinoresinol-lariciresinol reductase

ProSa

Protein structure analysis

PROSITE

Database of protein domains, families and functional sites

PROCHECK

Protein structure validation server

QMEAN

Protein model quality estimation server

SASA

Solvent accessible surface areas

SDR

Short-chain dehydrogenase/reductase

SDAP

Structural database of allergenic proteins

SMART

Simple modular architecture research tool

RMSD

Root mean square deviation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jimenez-Lopez, J.C., Kotchoni, S.O., Hernandez-Soriano, M.C. et al. Structural functionality, catalytic mechanism modeling and molecular allergenicity of phenylcoumaran benzylic ether reductase, an olive pollen (Ole e 12) allergen. J Comput Aided Mol Des 27, 873–895 (2013). https://doi.org/10.1007/s10822-013-9686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9686-y

Keywords

Navigation