Skip to main content
Log in

Computational prediction of kink properties of helices in membrane proteins

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We have combined molecular dynamics simulations and fold identification procedures to investigate the structure of 696 kinked and 120 unkinked transmembrane (TM) helices in the PDBTM database. Our main aim of this study is to understand the formation of helical kinks by simulating their quasi-equilibrium heating processes, which might be relevant to the prediction of their structural features. The simulated structural features of these TM helices, including the position and the angle of helical kinks, were analyzed and compared with statistical data from PDBTM. From quasi-equilibrium heating processes of TM helices with four very different relaxation time constants, we found that these processes gave comparable predictions of the structural features of TM helices. Overall, 95 % of our best kink position predictions have an error of no more than two residues and 75 % of our best angle predictions have an error of less than 15°. Various structure assessments have been carried out to assess our predicted models of TM helices in PDBTM. Our results show that, in 696 predicted kinked helices, 70 % have a RMSD less than 2 Å, 71 % have a TM-score greater than 0.5, 69 % have a MaxSub score greater than 0.8, 60 % have a GDT-TS score greater than 85, and 58 % have a GDT-HA score greater than 70. For unkinked helices, our predicted models are also highly consistent with their crystal structure. These results provide strong supports for our assumption that kink formation of TM helices in quasi-equilibrium heating processes is relevant to predicting the structure of TM helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  CAS  Google Scholar 

  2. Langelaan DN, Wieczorek M, Blouin C, Rainey JK (2010) Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors. J Chem Inf Model 50(12):2213–2220. doi:10.1021/ci100324n

    Article  CAS  Google Scholar 

  3. Huang YH, Chen CM (2012) Statistical analyses and computational prediction of helical kinks in membrane proteins. J Comput-Aided Mol Des 26(10):1171–1185. doi:10.1007/s10822-012-9607-5

    Article  CAS  Google Scholar 

  4. von Heijne G (1991) Proline kinks in transmembrane α-helices. J Mol Biol 218(3):499–503. doi:10.1016/0022-2836(91)90695-3

    Article  Google Scholar 

  5. Jacob J, Duclohier H, Cafiso DS (1999) The role of proline and glycine in determining the backbone flexibility of a channel-forming peptide. Biophys J 76(3):1367–1376. doi:10.1016/S0006-3495(99)77298-X

    Article  CAS  Google Scholar 

  6. Chakrabartty A, Baldwin RL (1995) Stability of alpha-helices. Adv Protein Chem 46:141–176

    Article  CAS  Google Scholar 

  7. Costantini S, Colonna G, Facchiano AM (2006) Amino acid propensities for secondary structures are influenced by the protein structural class. Biochem Biophys Res Commun 342(2):441–451. doi:10.1016/j.bbrc.2006.01.159

    Article  CAS  Google Scholar 

  8. Gray TM, Matthews BW (1984) Intrahelical hydrogen bonding of serine, threonine and cysteine residues within α-helices and its relevance to membrane-bound proteins. J Mol Biol 175(1):75–81. doi:10.1016/0022-2836(84)90446-7

    Article  CAS  Google Scholar 

  9. Hall SE, Roberts K, Vaidehi N (2009) Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction. J Mol Graph Model 27(8):944–950. doi:10.1016/j.jmgm.2009.02.004

    Article  CAS  Google Scholar 

  10. Riek RP, Rigoutsos I, Novotny J, Graham RM (2001) Non-alpha-helical elements modulate polytopic membrane protein architecture. J Mol Biol 306(2):349–362. doi:10.1006/jmbi.2000.4402

    Article  CAS  Google Scholar 

  11. Yohannan S, Faham S, Yang D, Whitelegge JP, Bowie JU (2004) The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc Natl Acad Sci USA 101(4):959–963. doi:10.1073/pnas.0306077101

    Article  CAS  Google Scholar 

  12. Cao Z, Bowie JU (2012) Shifting hydrogen bonds may produce flexible transmembrane helices. Proc Natl Acad Sci USA 109(21):8121–8126. doi:10.1073/pnas.1201298109

    Article  CAS  Google Scholar 

  13. Meruelo AD, Samish I, Bowie JU (2011) TMKink: a method to predict transmembrane helix kinks. Protein Sci 20(7):1256–1264. doi:10.1002/pro.653

    Article  CAS  Google Scholar 

  14. Kneissl B, Mueller SC, Tautermann CS, Hildebrandt A (2011) String kernels and high-quality data set for improved prediction of kinked helices in alpha-helical membrane proteins. J Chem Inf Model 51(11):3017–3025. doi:10.1021/ci200278w

    Article  CAS  Google Scholar 

  15. Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29(17):4031–4037

    Article  CAS  Google Scholar 

  16. Chen CC, Chen CM (2009) A dual-scale approach toward structure prediction of retinal proteins. J Struct Biol 165(1):37–46. doi:10.1016/j.jsb.2008.10.001

    Article  CAS  Google Scholar 

  17. Chen CC, Wei CC, Sun YC, Chen CM (2008) Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics. J Struct Biol 162(2):237–247. doi:10.1016/j.jsb.2008.01.003

    Article  CAS  Google Scholar 

  18. Wu HH, Chen CC, Chen CM (2012) Replica exchange Monte-Carlo simulations of helix bundle membrane proteins: rotational parameters of helices. J Comput Aided Mol Des 26(3):363–374. doi:10.1007/s10822-012-9562-1

    Article  CAS  Google Scholar 

  19. Werner T, Church WB (2013) Kink characterization and modeling in transmembrane protein structures. J Chem Inf Model 53(11):2926–2936. doi:10.1021/ci400236s

    Article  CAS  Google Scholar 

  20. Wang G, Dunbrack RL Jr (2003) PISCES: a protein sequence culling server. Bioinformatics 19(12):1589–1591

    Article  CAS  Google Scholar 

  21. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. doi:10.1002/jcc.20290

    Article  CAS  Google Scholar 

  22. Zhang Y, Skolnick J (2004) SPICKER: a clustering approach to identify near-native protein folds. J Comput Chem 25(6):865–871. doi:10.1002/jcc.20011

    Article  CAS  Google Scholar 

  23. Tsong TY (1990) Electrical modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transductions. Annu Rev Biophys Biophys Chem 19:83–106. doi:10.1146/annurev.bb.19.060190.000503

    Article  CAS  Google Scholar 

  24. Chen CM (2001) Lattice model of transmembrane polypeptide folding. Phys Rev E 63(1):010901. doi:10.1103/PhysRevE.63.010901

    Article  Google Scholar 

  25. Chen CM, Chen CC (2003) Computer simulations of membrane protein folding: structure and dynamics. Biophys J 84(3):1902–1908

    Article  CAS  Google Scholar 

  26. Hunenberger P (2005) Thermostat algorithms for molecular dynamics simulations. Adv Polym Sci 173:105–147. doi:10.1007/B99427

    Article  Google Scholar 

  27. Read RJ, Chavali G (2007) Assessment of CASP7 predictions in the high accuracy template-based modeling category. Proteins 69(Suppl 8):27–37. doi:10.1002/prot.21662

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Council of Taiwan under grant of no. NSC 99-2112-M-003 -011 -MY3. We thank D.N. Langelaan for providing the MC-HELAN algorithm, and Y.-H. Huang for stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-M. Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,920 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mai, TL., Chen, CM. Computational prediction of kink properties of helices in membrane proteins. J Comput Aided Mol Des 28, 99–109 (2014). https://doi.org/10.1007/s10822-014-9734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9734-2

Keywords

Navigation