Skip to main content

Advertisement

Log in

A density functional reactivity theory (DFRT) based approach to understand the interaction of cisplatin analogues with protecting agents

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In the present study some new insights are put into one of the major concern of cisplatin therapy and that is on the reduction of various cytotoxic and nephrotoxic side-effects of cisplatin analogues in cancer treatment. A better understanding of the interaction between different cisplatin analogues with various protecting agents can be achieved from the descriptors generated by density functional reactivity theory based comprehensive decomposition analysis of stabilization energy (Bagaria et al. in Phys Chem Chem Phys 11:8306–8315, 2009) scheme. Taking into account of three types of interactions i.e., of (1) Cisplatin analogues with DNA bases and base pairs (2) Cisplatin analogues with protecting agents and (3) Protecting agents with DNA bases, it is possible to develop a strategy (albeit qualitative) that suggests the best possible combinations of these drugs with protecting agents which can cause reduction in the toxic side-effects of cisplatin therapy. The sample set comprises of 96 pairs of cisplatin analogues and rescue agents and the generated data confirms the predictive power of the adopted strategy.

Graphical abstract

Sulfur containing protecting agents are capable of inhibiting the toxicity induced by the cisplatin analogues in cancer treatment. Thermodynamic and kinetic parameters generated by DFRT based CDASE scheme are found to be helpful in predicting the best possible protecting agent against a particular cisplatin analogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699

    CAS  Google Scholar 

  2. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498

    CAS  Google Scholar 

  3. Harder HC, Rosenber B (1970) Inhibitory effects of anti-tumor platinum compounds on DNA, RNA and protein syntheses in mammalian cells in vitro. Int J Cancer 6:207–216

    CAS  Google Scholar 

  4. Howle JA, Gale GR (1970) CIS-dichlorodiammineplatinum (II): persistent and selective inhibition of deoxyribonucleic acid synthesis in vivo. Biochem Pharmacol 19:2757–2762

    CAS  Google Scholar 

  5. Fuertes MA, Alonso C, Perez JM (2003) Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103:645–662

    CAS  Google Scholar 

  6. Bancroft DP, Lepre CA, Lippard SJ (1990) Platinum-195 NMR kinetic and mechanistic studies of cis- and trans-diamminedichloroplatinum(II) binding to DNA. J Am Chem Soc 112:6860–6871

    CAS  Google Scholar 

  7. Sherman SE, Lippard SJ (1987) Structural aspects of platinum anticancer drug interactions with DNA. Chem Rev 87:1153–1181

    CAS  Google Scholar 

  8. Mello JA, Lippard SJ, Essigmann JM (1995) DNA Adducts of cis-diamminedichloroplatinum(II) and its trans isomer inhibit RNA polymerase II differentially in vivo. Biochemistry 34:14783–14791

    CAS  Google Scholar 

  9. Go RS, Adjei AA (1999) Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol 17:409–422

    CAS  Google Scholar 

  10. Jung Y, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107:1387–1407

    CAS  Google Scholar 

  11. Sresht V, Bellare JR, Gupta SK (2011) Modeling the cytotoxicity of cisplatin. Ind Eng Chem Res 50:12872–12880

    CAS  Google Scholar 

  12. Yoshida M, Khokhar AR, Kido Y, Ali-Osman F, Siddik ZH (1994) Correlation of total and interstrand DNA adducts in tumor and kidney with antitumor efficacies and differential nephrotoxicities of cis-ammine/cyclohexylamine-dichloroplatinum(II) and cisplatin. Biochem Pharmacol 48:793–799

    CAS  Google Scholar 

  13. Palm-Espling ME, Wittung-Stafshede P (2012) Reaction of platinum anticancer drugs and drug derivatives with a copper transporting protein, Atox1. Biochem Pharmacol 83:874–881

    CAS  Google Scholar 

  14. Alderden RA, Hall DM, Hambley TW (2006) The discovery and development of cisplatin. J Chem Educ 83:728

    CAS  Google Scholar 

  15. Kasherman Y, Sturup S, Gibson D (2009) Is glutathione the major cellular target of cisplatin? A study of the interactions of cisplatin with cancer cell extracts. J Med Chem 52:4319–4328

    CAS  Google Scholar 

  16. Marty M, Pouillart P, Scholl S, Droz JP, Azab M, Brion M, Pujade-Lauraine E, Paule B, Paes D, Bons J (1990) Comparison of the 5-hydroxytryptamine (serotonin) antagonist ondansetron (Gr 38032F) with high-dose metoclopramide in the control of cisplatin-induced emesis. New Engl J Med 322:816–821

    CAS  Google Scholar 

  17. Cubeddu LZ, Horrman IS, Fuenmayor TN, Finn AL (1990) Efficacy of ondansetron (Gr 38032F) and the role of serotonin in cisplatin-induced nausea and vomiting. New Engl J Med 322:810–815

    CAS  Google Scholar 

  18. Weiss RB, Christian MC (1993) New cisplatin analogues in development. drugs 46:360–377

    CAS  Google Scholar 

  19. Laurell G, Beskow C, Frankendal B, Borg E (1996) Cisplatin administration to gynecologic cancer patients: long term effects on hearing. Cancer 78:1798–1804

    CAS  Google Scholar 

  20. Ozols RF, Corden BJ, Collins J, Young RC (1984) Platinum coordination complexes in cancer chemotherapy. Martinus Nijhoff, Boston, p 321

    Google Scholar 

  21. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    CAS  Google Scholar 

  22. Pearson RG (1968) Hard and soft acids and bases, HSAB, part I: underlying theories. J Chem Educ 45:581

    CAS  Google Scholar 

  23. Pearson RG (1968) Hard and soft acids and bases, HSAB, part II: underlying theories. J Chem Educ 45:643

    CAS  Google Scholar 

  24. Treskes M, van der Vijgh JFW (1993) WR2721 as a modulator of cisplatin-and carboplatin-induced side effects in comparison with other chemoprotective agents: a molecular approach. Cancer Chemother Pharmacol 33:93–106

    CAS  Google Scholar 

  25. Berners-Price JS, Kuchel PW (1990) Reaction of cis- and trans-[PtCl2(NH3)2] with reduced glutathione inside human red blood cells, studied by 1H and 15N-{1H} DEPT NMR. J Inorg Biochem 38:327–345

    CAS  Google Scholar 

  26. Korst AEC, Eeltink CM, Vermorken JB, van der Vijgh WJF (1997) Pharmacokinetics of amifostine and its metabolites in patients. Eur J Cancer 33:1425–1429

    CAS  Google Scholar 

  27. Dabrowiak JC, Goodisman J, Souid AK (2002) Kinetic study of the reaction of cisplatin with thiols. Drug Metab Dispos 30:1378–1384

    CAS  Google Scholar 

  28. Reedijk J (1999) Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 99:2499–2510

    CAS  Google Scholar 

  29. Howell SB, Pfeifle CL, Wung WE, Olshen RA (1983) Intraperitoneal cis-Diamminedichloroplatinum with systemic thiosulfate protection. Cancer Res 43:1426–1431

    CAS  Google Scholar 

  30. Boelrijk AEM, Boogaard PJ, Lempers ELM, Reedijk J (1991) Regeneration experiments of the platinated enzyme fumarase, using sodium diethyldithiocarbamate, thiourea, and sodium thiosulfate. J Inorg Biochem 41:17–24

    CAS  Google Scholar 

  31. Elferink F, van der Vijgh WJF, Klein I (1986) Interaction of cisplatin and carboplatin with sodium thiosulfate: reaction rates and protein binding. Clin Chem 32:641–645

    CAS  Google Scholar 

  32. Dedon PC, Borch RF (1987) Characterization of the reactions of platinum antitumor agents with biologic and nonbiologic sulfur-containing nucleophiles. Biochem Pharmacol 36:1955–1964

    CAS  Google Scholar 

  33. Bodenner DL, Dendon PC, Keng PC, Katz JC, Borch RF (1986) Selective protection against cis-Diamminedichloroplatinum(II)-induced toxicity in kidney, gut, and bone marrow by diethyldithiocarbamate. Cancer Res 46:2751–2755

    CAS  Google Scholar 

  34. Bodenner DL, Dendon PC, Keng PC, Borch RF (1986) Effect of diethyldithiocarbamate on cis-Diamminedichloroplatinum(II)-induced cytotoxicity, DNA cross-linking, and γ-glutamyl transpeptidase inhibition. Cancer Res 46:2745–2750

    CAS  Google Scholar 

  35. Chval Z, Sip M (2000) Pentacoordinated transition states of cisplatin hydrolysis—ab initio study. J Mol Struct THEOCHEM 532:59–68

    CAS  Google Scholar 

  36. Zhang Y, Guo Z, You XZ (2001) Hydrolysis theory for cisplatin and its analogues based on density functional studies. J Am Chem Soc 123:9378–9387

    CAS  Google Scholar 

  37. Sarmah P, Deka RC (2008) Solvent effect on the reactivity of CIS-platinum (II) complexes: a density functional approach. Int J Quantum Chem 108:1400–1409

    CAS  Google Scholar 

  38. Sarmah P, Deka RC (2009) DFT-based QSAR and QSPR models of several cis-platinum complexes: solvent effect. J Comput Aided Mol Des 23:343–354

    CAS  Google Scholar 

  39. Raber J, Zhu C, Eriksson LA (2004) Activation of anti-cancer drug cisplatin—is the activated complex fully aquated? Mol Phys 102:2537–2544

    CAS  Google Scholar 

  40. Lau JKC, Deubel DB (2006) Hydrolysis of the anticancer drug cisplatin: pitfalls in the interpretation of quantum chemical calculations. J Chem Theory Comput 2:103–106

    CAS  Google Scholar 

  41. Mantri Y, Lippard SJ, Baik MH (2007) Bifunctional binding of cisplatin to DNA: why does cisplatin form 1,2-intrastrand cross-links with AG but not with GA? J Am Chem Soc 129:5023–5030

    CAS  Google Scholar 

  42. Raber J, Zhu C, Eriksson LA (2005) Theoretical study of cisplatin binding to DNA: the importance of initial complex stabilization. J Phys Chem B 109:11006–11015

    CAS  Google Scholar 

  43. Zeizinger M, Burda JV, Leszczynski J (2004) The influence of a sugar-phosphate backbone on the cisplatin-bridged BpB′ models of DNA purine bases. Quantum chemical calculations of Pt(II) bonding characteristics. Phys Chem Chem Phys 6:3585–3590

    CAS  Google Scholar 

  44. Spiegel K, Rothlisberger U, Carloni P (2004) Cisplatin binding to DNA oligomers from hybrid Car-Parrinello/molecular dynamics simulations. J Phys Chem B 104:2699–2707

    Google Scholar 

  45. MatsuiT Shigeta Y, Hirao K (2007) Multiple proton-transfer reactions in DNA base pairs by coordination of Pt complex. J Phys Chem B 111:1176–1181

    Google Scholar 

  46. Parr RG, Yang W (1989) Density—functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  47. Koch W, Holthausen MA (2000) Chemist’s guide to density functional theory. VCH, Weinheim

    Google Scholar 

  48. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    CAS  Google Scholar 

  49. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    CAS  Google Scholar 

  50. Yang W, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726

    CAS  Google Scholar 

  51. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975

    CAS  Google Scholar 

  52. Chattaraj PK, Giri S (2009) Electrophilicity index within a conceptual DFT framework. Annu Rep Prog Chem Sect C 105:13–39

    CAS  Google Scholar 

  53. Krishnamurty S, Pal S (2000) Intermolecular reactivity trends using the concept of group softness. J Phys Chem A 104:7639–7645

    CAS  Google Scholar 

  54. Roy RK (2004) On the reliability of global and local electrophilicity descriptors. J Phys Chem A 108:4934–4939

    CAS  Google Scholar 

  55. Roy RK, Usha V, Paulovic J, Hirao K (2006) Are the local electrophilicity descriptors reliable indicators of global electrophilicity trends? J Phys Chem A 109:4601–4606

    Google Scholar 

  56. Roy RK, Usha V, Patel BK, Hirao K (2006) Acetalization and thioacetalization of cabonyl compounds: a case study based on global and local electrophilicity descriptors. J Comput Chem 27:773–780

    CAS  Google Scholar 

  57. Roy RK, Bagaria P, Naik S, Kavala V, Patel BK (2006) Chemoselectivities in acetalization, thioacetalization, oxathioacetalization and azathioacetalization. J Phys Chem A 110:2181–2187

    CAS  Google Scholar 

  58. Bagaria P, Roy RK (2008) Correlation of global electrophilicity with the activation energy in single-step concerted reactions. J Phys Chem A 112:97–105

    CAS  Google Scholar 

  59. Cárdenas C, Rabi N, Ayers PW, Morell C, Jaramillo P, Fuentealba P (2009) Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J Phys Chem A 113:8660–8667

    Google Scholar 

  60. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    CAS  Google Scholar 

  61. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    CAS  Google Scholar 

  62. Yang W, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726

    CAS  Google Scholar 

  63. Parr RG, Gazquez JL (1993) Hardness functional. J Phys Chem 97:3939–3940

    CAS  Google Scholar 

  64. Saha S, Roy K (2007) “One-into-many” model: an approach on DFT based reactivity descriptor to predict the regioselectivity of large systems. J Phys Chem B 111:9664–9674

    CAS  Google Scholar 

  65. Saha S, Roy RK (2008) “One-into-many” model: an Approach on DFT based reactivity descriptor to predict the regioselectivity of large systems. J Phys Chem B 112:1884

    CAS  Google Scholar 

  66. Saha S, Roy RK (2008) N-Dependence problem of local hardness parameter. Phys Chem Chem Phys 10:5591–5598

    CAS  Google Scholar 

  67. Roy RK, Krishnamurti S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: carbonyl compounds. J Phys Chem A 102:3746–3755

    CAS  Google Scholar 

  68. Roy RK, De Proft F, Geerlings P (1998) Site of protonation in aniline and substituted anilines in the gas phase: a study via the local hard and soft acids and bases concept. J Phys Chem A 102:7035–7040

    CAS  Google Scholar 

  69. Perez P, Toro-Labbe A, Aizman A, Contreras R (2002) Comparison between experimental and theoretical scales of electrophilicity in benzhydryl cations. J Org Chem 67:4747–4752

    CAS  Google Scholar 

  70. Lamsabhi AM, Escobar CA, Perez P (2005) Do substituents make any contribution to the formation of systems where the electronic effects seem to be neutralized? The case of the indigo dye formation. J Phys Org Chem 18:1161–1168

    CAS  Google Scholar 

  71. Domingo LR, Perez P, Contreras R (2003) Electronic contributions to the σp parameter of the Hammett equation. J Org Chem 68:6060–6062

    CAS  Google Scholar 

  72. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    CAS  Google Scholar 

  73. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–794

    CAS  Google Scholar 

  74. Maynard AT, Huang M, Rice WG, Covell DG (1998) Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc Natl Acad Sci USA 95:11578–11583

    CAS  Google Scholar 

  75. Parr RG, von Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    CAS  Google Scholar 

  76. Ayers PW, Parr RG (2001) Variational principles for describing chemical reactions. reactivity indices based on the external potential. J Am Chem Soc 123:2007–2017

    CAS  Google Scholar 

  77. Jaramillo P, Perez P, Contreras R, Tiznadoand W, Fuentealba P (2006) Definition of a nucleophilicity scale. J Phys Chem A 110:8181–8187

    CAS  Google Scholar 

  78. Jaramillo P, Fuentealba P, Perez P (2006) Nucleophilicity scale for n- and π-nucleophiles. Chem Phys Lett 427:421–425

    CAS  Google Scholar 

  79. Ayers PW, Anderson JSM, Rodriguez JI, Jawed Z (2005) Indices for predicting the quality of leaving groups. Phys Chem Chem Phys 7:1918–1925

    CAS  Google Scholar 

  80. Pérez P, Contreras R, Aizman A (1999) Sites of protonation of N2-substituted N1, N1-dimethyl formamidines from regional reactivity indices. THEOCHEM 493:267–273

    Google Scholar 

  81. Saha S, Bhattacharjee R, Roy RK (2013) hardness potential derivatives and their relation to Fukui indices. J Comp Chem 34:662–670

    CAS  Google Scholar 

  82. Bhattacharjee R, Roy RK (2013) On the relative contribution of combined kinetic and exchange energy terms vs electronic component of molecular electrostatic potential in hardness potential derivatives. J Phys Chem A 117:11528–11539

  83. Bagaria P, Saha S, Murru S, Kavala V, Patel B, Roy RK (2009) A comprehensive decomposition analysis of stabilization energy (CDASE) and its application in locating the rate-determining step of multi-step reactions. Phys Chem Chem Phys 11:8306–8315

    CAS  Google Scholar 

  84. Sarmah A, Saha S, Bagaria P, Roy RK (2012) On the complementarity of comprehensive decomposition analysis of stabilization energy (CDASE)—scheme and supermolecular approach. Chem Phys 394:29–35

    CAS  Google Scholar 

  85. Sarmah A, Roy RK (2013) Understanding the preferential binding interaction of aqua-cisplatins with nucleobase guanine over adenine: a density functional reactivity theory based approach. RSC Adv 3:2822–2830

    CAS  Google Scholar 

  86. Sarmah A, Roy RK (2013) Understanding the interaction of nucleobases with chiral semi-conducting single-walled carbon nanotubes: an alternative theoretical approach based on density functional reactivity theory (DFRT). J Phys Chem C 117:21539–21548

    CAS  Google Scholar 

  87. Saha S, Roy RK, Pal S (2010) CDASE—a reliable scheme to explain the reactivity sequence between Diels–Alder pairs. Phys Chem Chem Phys 12:9328–9338

    CAS  Google Scholar 

  88. Cedillo A, Contreras R, Galvan M, Aizman A, Andres J, Safont VS (2007) Nucleophilicity index from perturbed electrostatic potentials. J Phys Chem 111:2442–2447

    CAS  Google Scholar 

  89. Dennington R, Keith T, Millam J (2009) GaussView version 5. Semichem Inc., Shawnee Mission KS

    Google Scholar 

  90. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3106

    CAS  Google Scholar 

  91. Becke AD (1993) Density functional thermochemistry. III.The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  92. Lee CT, Yang WT, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–792

    CAS  Google Scholar 

  93. Peterson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open shell systems and the total energies of the first row atoms. J Chem Phys 94:6081–6091

    Google Scholar 

  94. Hehre WJ, Stewart RF, Pople JA (1969) Self consistent molecular orbital methods. I. Use of gaussian expansions of slater type atomic orbitals. J Chem Phys 51:2657–2665

    CAS  Google Scholar 

  95. Peterson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) A complete basis set model chemistry. I. The total energies of closed shell atoms and hydrides of the first row elements. J Chem Phys 89:2193–2219

    Google Scholar 

  96. Ditchfield R, Hehre WJ, Pople JA (1971) Self consistent molecular orbital methods. IX. An extended gaussian type basis for molecular orbital studies of organic molecules. J Chem Phys 54:724–729

    CAS  Google Scholar 

  97. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    CAS  Google Scholar 

  98. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Google Scholar 

  99. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:284–299

    Google Scholar 

  100. Frisch MJ, et al. GAUSSIAN 03, revision E.01. Gaussian, Inc., Wallingford

  101. Murray V, Whittaker J, Temple DM, McFadyne WD (1997) Interaction of 11 cisplatin analogues with DNA: characteristic pattern of damage with monofunctional analogues. Biochim Biophys Acta 1534:261–271

    Google Scholar 

  102. Rixe O, Ortuzar W, Alvarez M, Parker M, Reed E, Paull K (1996) Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the national cancer institute’s anticancer drug screen panel. Biochem Pharmacol 52:1855–1865

    CAS  Google Scholar 

  103. Wilton DJ, Ghosh M, Chary KVA, Akasaka K, Willamson MJ (2008) Structural change in a B-DNA helix with hydrostatic pressure. Nucleic Acids Res 36:4032–4037

    CAS  Google Scholar 

  104. Dans PD, Coitin˜o EL (2009) Density functional theory characterization and descriptive analysis of cisplatin and related compounds. J Chem Inf Model 49:1407–1419

    CAS  Google Scholar 

  105. Stephen BH, Craig EP, Wung WE, Olshen RA (1983) Intraperitoneal cis-Diamminedichloroplatinum with systemic thiosulfate protection. Cancer Res 43:1426–1431

    Google Scholar 

  106. Frederick HH et al (2003) New approaches to drug discovery and development: a mechanism-based approach to pharmaceutical research and its application to BNP7787, a novel chemoprotective agent. Cancer Chemother Pharmacol 52:S3–S15

    Google Scholar 

  107. Millar BC, Siddik ZH, Millar JI, Jinks S (1985) Mesna does not reduce cisplatin induced nephrotoxicity in the rat. Cancer Chemother Pharmacol 15:307–309

    CAS  Google Scholar 

  108. Aull JL, Rice AC, Tebbetts LA (1977) Interactions of platinum complexes with the essential and nonessential sulfhydryl groups of thymidylate synthetase. Biochemistry 16:672–677

    CAS  Google Scholar 

Download references

Acknowledgments

A.S. is grateful to the DST and UGC-BSR, Government of India for granting him research fellowships. R.K.R. acknowledges the DST (Project Ref. No. SB/S1/PC-067/2013), Government of India, New Delhi and Departmental Research Support under Special Assistance Program (DRS-SAP) of UGC (Project Ref. No. F. 540/5/DRS/2013 (SAP-I)], Government of India, New Delhi for financial support of this research. Computational facilities extended by the Department of Chemistry, BITS PILANI, Pilani, is also gratefully acknowledged. Authors would also like to thank the reviewer for making some valuable suggestions which has helped to improve the manuscript in the modified version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kinkar Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information. IUPAC nomenclature of cisplatin analogues and common names of the protecting agents, the optimized energy values for both cisplatin analogues and protecting agents.

Supplementary material 1 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmah, A., Roy, R.K. A density functional reactivity theory (DFRT) based approach to understand the interaction of cisplatin analogues with protecting agents. J Comput Aided Mol Des 28, 1153–1173 (2014). https://doi.org/10.1007/s10822-014-9790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9790-7

Keywords

Navigation