Skip to main content
Log in

Computational study of elements of stability of a four-helix bundle protein biosurfactant

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Biosurfactants are surface-active molecules produced principally by microorganisms. They are a sustainable alternative to chemically-synthesized surfactants, having the advantages of being non-toxic, highly functional, eco-friendly and biodegradable. However they are currently only used in a few industrial products due to costs associated with production and purification, which exceed those for commodity chemical surfactants. DAMP4, a member of a four-helix bundle biosurfactant protein family, can be produced in soluble form and at high yield in Escherichia coli, and can be recovered using a facile thermal phase-separation approach. As such, it encompasses an interesting synergy of biomolecular and chemical engineering with prospects for low-cost production even for industrial sectors. DAMP4 is highly functional, and due to its extraordinary thermal stability it can be purified in a simple two-step process, in which the combination of high temperature and salt leads to denaturation of all contaminants, whereas DAMP4 stays stable in solution and can be recovered by filtration. This study aimed to characterize and understand the fundamental drivers of DAMP4 stability to guide further process and surfactant design studies. The complementary use of experiments and molecular dynamics simulation revealed a broad pH and temperature tolerance for DAMP4, with a melting point of 122.4 °C, suggesting the hydrophobic core as the major contributor to thermal stability. Simulation of systematically created in silico variants of DAMP4 showed an influence of number and location of hydrophilic mutations in the hydrophobic core on stability, demonstrating a tolerance of up to three mutations before a strong loss in stability occurred. The results suggest a consideration of a balance of stability, functionality and kinetics for new designs according to their application, aiming for maximal functionality but at adequate stability to allow for cost-efficient production using thermal phase separation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sekhon KK, Khanna S, Cameotra SS (2012) Biosurfactant production and potential correlation with esterase activity. J Pet Environ Biotechnol 3:1–10

    Google Scholar 

  2. PRNewswire (2012) Biosurfactants industry is expected to reach usd 2,210.5 million globally in 2018: Transparency market research. http://www.prnewswire.com/news-releases/biosurfactants-industry-is-expected-to-reach-usd-22105-million-globally-in-2018-transparency-market-research-163530426.html. Accessed 23/04/2014

  3. Mulligan CN, Sharma SK, Mudhoo A (2014) Biosurfactants: research trends and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Marchant R, Banat IM (2012) Biosurfactants: A sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605

    Article  CAS  Google Scholar 

  5. Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:1–19

    Article  Google Scholar 

  6. Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565

    Article  CAS  Google Scholar 

  7. Syldatk C, Hausmann R (2010) Microbial biosurfactants. Eur J Lipid Sci Technol 112:615–616

    Article  CAS  Google Scholar 

  8. Middelberg APJ, Dimitrijev Dwyer M (2011) A designed biosurfactant protein for switchable foam control. ChemPhysChem 12:1426–1429

    Article  CAS  Google Scholar 

  9. Dimitrijev Dwyer M, He L, James M, Nelson A, Wang L, Middelberg APJ (2012) The effects of acid hydrolysis on protein biosurfactant molecular, interfacial, and foam properties: Ph responsive protein hydrolysates. Soft Matter 8:5131–5139

    Article  CAS  Google Scholar 

  10. Dimitrijev Dwyer M, Brech M, Yu L, Middelberg APJ (2014) Intensified expression and purification of a recombinant biosurfactant protein. Chem Eng Sci 105:12–21

    Article  CAS  Google Scholar 

  11. Ford NB, Shin DW, Gray HB, Winkler JR (2013) Conformational dynamics of a fast folding cytochrome captured by electron transfer, time-resolved fluorescence energy transfer, and microfluidic mixing. Paper presented at the 245th ACS National Meeting and Exposition, New Orleans, April 7–11, 2013

  12. Faraone-Mennella J, Gray HB, Winkler JR (2005) Early events in the folding of four-helix-bundle heme proteins. Proc Natl Acad Sci USA 102:6315–6319

    Article  CAS  Google Scholar 

  13. Nagi AD, Regan L (1997) An inverse correlation between loop length and stability in a four-helix-bundle protein. Fold Des 2:67–75

    Article  CAS  Google Scholar 

  14. De Vos AM, Ultsch M, Kossiakoff AA (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255:306–312

    Article  Google Scholar 

  15. Kamtekar S, Schiffer JM, Xiong H, Babik JM, Hecht MH (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262:1680–1685

    Article  CAS  Google Scholar 

  16. Choma CT, Lear JD, Nelson MJ, Dutton PL, Robertson DE, DeGrado WF (1994) Design of a heme-binding four-helix bundle. J Am Chem Soc 116:856–865

    Article  CAS  Google Scholar 

  17. Fukuda M, Komatsu Y, Yamada H, Morikawa R, Miyakawa T, Takasu M, Akanuma S, Yamagishi A (2013) Evaluation of the protein interfaces that form an intermolecular four-helix bundle as studied by computer simulation. Mol Simul 40:498–503

    Article  Google Scholar 

  18. Schafmeister CE, LaPorte SL, Miercke LJ, Stroud RM (1997) A designed four helix bundle protein with native-like structure. Nat Struct Mol Biol 4:1039–1046

    Article  CAS  Google Scholar 

  19. Wei Y, Liu T, Sazinsky SL, Moffet DA, Pelczer I, Hecht MH (2003) Stably folded de novo proteins from a designed combinatorial library. Protein Sci 12:92–102

    Article  CAS  Google Scholar 

  20. Munson M, Regan L, O’Brien R, Sturtevant JM (1994) Redesigning the hydrophobic core of a four-helix-bundle protein. Protein Sci 3:2015–2022

    Article  CAS  Google Scholar 

  21. Bellesia G, Jewett AI, Shea JE (2011) Relative stability of de novo four-helix bundle proteins: insights from coarse grained molecular simulations. Protein Sci 20:818–826

    Article  CAS  Google Scholar 

  22. Robinson CR, Sligar SG (1993) Electrostatic stabilization in four-helix bundle proteins. Protein Sci 2:826–837

    Article  CAS  Google Scholar 

  23. Middelberg AP, Radke CJ, Blanch HW (2000) Peptide interfacial adsorption is kinetically limited by the thermodynamic stability of self association. Proc Natl Acad Sci 97:5054–5059

    Article  CAS  Google Scholar 

  24. Freites JA, Tobias DJ, von Heijne G, White SH (2005) Interface connections of a transmembrane voltage sensor. Proc Natl Acad Sci USA 102:15059–15064

    Article  CAS  Google Scholar 

  25. Biswas S, Chakrabarti C, Kundu S, Jagannadham MV, Dattagupta JK (2003) Proposed amino acid sequence and the 1.63 å x-ray crystal structure of a plant cysteine protease, ervatamin b: some insights into the structural basis of its stability and substrate specificity. Proteins Struct Funct Bioinf 51:489–497

    Article  CAS  Google Scholar 

  26. Shimoni L, Glusker JP (1995) Hydrogen bonding motifs of protein side chains: descriptions of binding of arginine and amide groups. Protein Sci 4:65–74

    Article  CAS  Google Scholar 

  27. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13

    Article  CAS  Google Scholar 

  28. Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins Struct Funct Bioinf 57:678–683

  29. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  Google Scholar 

  30. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with yasara nova—a self-parameterizing force field. Proteins Struct Funct Bioinf 47:393–402

    Article  CAS  Google Scholar 

  31. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  32. Stenberg KA, Vihinen M (2009) Crystal structure of a 1.6-hexanediol bound tetrameric form of Escherichia coli lac-repressor refined to 2.1 å resolution. Proteins Struct Funct Bioinf 75:748–759

    Article  CAS  Google Scholar 

  33. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus K (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in casp8. Proteins Struct Funct Bioinf 77:114–122

    Article  CAS  Google Scholar 

  34. Hooft R, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Article  CAS  Google Scholar 

  35. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins Struct Funct Bioinf 17:355–362

    Article  CAS  Google Scholar 

  36. Wiederstein M, Sippl MJ (2007) Prosa-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  37. Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by cα geometry: ϕ, ψ and cβ deviation. Proteins Struct Funct Bioinf 50:437–450

    Article  CAS  Google Scholar 

  38. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  39. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  40. Grubmüller H, Tavan P (1998) Multiple time step algorithms for molecular dynamics simulations of proteins: How good are they? J Comput Chem 19:1534–1552

    Article  Google Scholar 

  41. Grubmüller H, Heller H, Windemuth A, Schulten K (1991) Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol Simul 6:121–142

    Article  Google Scholar 

  42. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  43. Kell G (1967) Precise representation of volume properties of water at one atmosphere. J Chem Eng Data 12:66–69

    Article  CAS  Google Scholar 

  44. Krieger E, Nielsen JE, Spronk CA, Vriend G (2006) Fast empirical pka prediction by Ewald summation. J Mol Graph Model 25:481–486

    Article  CAS  Google Scholar 

  45. Day R, Bennion BJ, Ham S, Daggett V (2002) Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J Mol Biol 322:189–203

    Article  CAS  Google Scholar 

  46. Kumar S, Nussinov R (2001) How do thermophilic proteins deal with heat? Cell Mol Life Sci 58:1216–1233

    Article  CAS  Google Scholar 

  47. Chen Y-H, Yang JT, Chau KH (1974) Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 13:3350–3359

    Article  CAS  Google Scholar 

  48. Renkema J, Lakemond CM, de Jongh HH, Gruppen H, van Vliet T (2000) The effect of ph on heat denaturation and gel forming properties of soy proteins. J Biotechnol 79:223–230

    Article  CAS  Google Scholar 

  49. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  Google Scholar 

  50. Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75:422–427

    Article  CAS  Google Scholar 

  51. Toplak A, Wu B, Fusetti F, Quaedflieg PJ, Janssen DB (2013) Proteolysin, a novel highly thermostable and cosolvent-compatible protease from the thermophilic bacterium coprothermobacter proteolyticus. Appl Environ Microbiol 79:5625–5632

    Article  CAS  Google Scholar 

  52. Gunari N, Balazs AC, Walker GC (2007) Force-induced globule-coil transition in single polystyrene chains in water. J Am Chem Soc 129:10046–10047

    Article  CAS  Google Scholar 

  53. Godawat R, Jamadagni SN, Garde S (2010) Unfolding of hydrophobic polymers in guanidinium chloride solutions. J Phys Chem B 114:2246–2254

    Article  CAS  Google Scholar 

  54. Mason PE, Neilson GW, Enderby JE, Saboungi M-L, Dempsey CE, MacKerell AD, Brady JW (2004) The structure of aqueous guanidinium chloride solutions. J Am Chem Soc 126:11462–11470

    Article  CAS  Google Scholar 

  55. Mehrnejad F, Khadem-Maaref M, Ghahremanpour MM, Doustdar F (2010) Mechanisms of amphipathic helical peptide denaturation by guanidinium chloride and urea: A molecular dynamics simulation study. J Comput Aided Mol Des 24:829–841

    Article  CAS  Google Scholar 

  56. Jelesarov I, Dürr E, Thomas RM, Bosshard HR (1998) Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper). Biochemistry 37:7539–7550

    Article  CAS  Google Scholar 

  57. Dimitrijev Dwyer M, He L, James M, Nelson A, Middelberg AP (2013) Insights into the role of protein molecule size and structure on interfacial properties using designed sequences. J R Soc Interface. doi:10.1098/rsif.2012.0987

  58. Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal w and clustal x version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge funding by an Australian Research Council Discovery Grant (DP120103683). A.S. was financially supported by an UQI Tuition Fee Scholarship and an AIBN RHD Living Scholarship. A.P.J.M. thanks the Queensland Government award of the 2010 Smart State Premier’s Fellowship. We acknowledge Lei Yu for executing DAMP4 expression and purification. Further, we would like to thank the HPC support from the University of Queensland Research Computing Centre (RCC), the Queensland Cyber Infrastructure Foundation (QCIF) and NCI National Facility for their support and the supercomputer resource allocation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie K. Connors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaller, A., Connors, N.K., Dwyer, M.D. et al. Computational study of elements of stability of a four-helix bundle protein biosurfactant. J Comput Aided Mol Des 29, 47–58 (2015). https://doi.org/10.1007/s10822-014-9803-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9803-6

Keywords

Navigation