Skip to main content
Log in

A consistent S-Adenosylmethionine force field improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

S-Adenosylmethionine (AdoMet) is involved in many biological processes as cofactor in enzymes transferring its sulfonium methyl group to various substrates. Additionally, it is used as drug and nutritional supplement to reduce the pain in osteoarthritis and against depression. Due to the biological relevance of AdoMet it has been part of various computational simulation studies and will also be in the future. However, to our knowledge no rigorous force field parameter development for its simulation in biological systems has been reported. Here, we use electronic structure calculations combined with molecular dynamics simulations in explicit solvent to develop force field parameters compatible with the AMBER99 force field. Additionally, we propose new dynamic Hirshfeld-I atomic charges which are derived from the polarized electron density of AdoMet in aqueous solution to describe its electrostatic interactions in biological systems. The validation of the force field parameters and the atomic charges is performed against experimental interproton NOE distances of AdoMet in aqueous solution and crystal structures of AdoMet in the cavity of three representative proteins.

Graphical Abstract

A S-Adenosylmethionine force field was developed together with Dynamic Hirshfeld-I charges (shown color coded in figure) and validated against various experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cantoni GL (1975) Annu Rev Biochem 44:435

    Article  CAS  Google Scholar 

  2. Ravanel S, Gakière B, Job D, Douce R (1998) Proc Natl Acad Sci USA 95:7805

    Article  CAS  Google Scholar 

  3. Jones PA, Takai D (2001) Science 293:1068

    Article  CAS  Google Scholar 

  4. Stock JB, Surette MG, McCleary WR, Stock AM (1992) J Biol Chem 267:19753

    CAS  Google Scholar 

  5. Berger SL (2001) Science 292:64

    CAS  Google Scholar 

  6. Frey PA, Magnusson OT et al (2003) Chem Rev 103:2129–2148

    Article  CAS  Google Scholar 

  7. Frey PA (2001) Annu Rev Biochem 70:121

    Article  CAS  Google Scholar 

  8. Cantoni GL (1952) J Am Chem Soc 74:2942

    Article  CAS  Google Scholar 

  9. Parks LW, Schlenk F et al (1958) J Biol Chem 230:295

    CAS  Google Scholar 

  10. Borchardt RT (1979) J Am Chem Soc 101:458

    Article  CAS  Google Scholar 

  11. Follmann H, Kuntz I, Zacharias W (1975) Eur J Biochem 58:31

    Article  CAS  Google Scholar 

  12. Follmann H, Gremels G (1974) Eur J Biochem 47:187

    Article  CAS  Google Scholar 

  13. Klee WA, Mudd SH (1967) Biochemistry 6:988

    Article  CAS  Google Scholar 

  14. Stolowitz ML, Minch MJ (1981) J Am Chem Soc 103:6017

    Article  Google Scholar 

  15. Markham GD, Norrby P-O, Bock CW (2002) Biochemistry 41:7636

    Article  CAS  Google Scholar 

  16. Hu P, Wang S, Zhang Y (2008) J Am Chem Soc 130:3806

    Article  CAS  Google Scholar 

  17. Stacklies W, Xia F, Gräter F (2009) PLoS Comput Biol 5:e1000574

    Article  Google Scholar 

  18. Huang W, Kim J, Jha S, Aboul-ela F (2009) Nucleic acids res 37:6528

    Article  CAS  Google Scholar 

  19. Whitford PC, Schug A, Saunders J, Hennelly SP, Onuchic JN, Sanbonmatsu KY (2009) Biophys J 96:L7

    Article  Google Scholar 

  20. Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049

    Article  CAS  Google Scholar 

  21. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery J, Vreven T, Kudin KN, Burant JC et al (2004) Gaussian 03, Revision E. 01. Gaussian, Inc., Wallingford

    Google Scholar 

  23. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269

    Article  CAS  Google Scholar 

  24. Dupradeau F-Y, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N, Lelong D, Rosanski W, Cieplak P (2010) Phys chem chem phys 12:7821

    Article  CAS  Google Scholar 

  25. Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 126:144111

    Article  Google Scholar 

  26. Hirshfeld FL (1977) Theoretical chemistry accounts: theory, computation, and modeling. Theor Chim Acta 44:129

    Article  CAS  Google Scholar 

  27. Van Damme S, Bultinck P, Fias S (2009) J Chem Theory Comput 5:334

    Article  Google Scholar 

  28. Verstraelen T HORTON 1.2.1

  29. Vöhringer-Martinez E, Verstraelen T, Ayers PW (2014) J Phys Chem B 118:9871

    Article  Google Scholar 

  30. Perone CS (2009) ACM SIGEVOlution 4:12

    Article  Google Scholar 

  31. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J ChemTheory Comput 4:435

    CAS  Google Scholar 

  32. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101

    Article  Google Scholar 

  33. Hess B, Bekker H, Berendsen H, Fraaije J (1997) J Comput Chem 18:1463

    Article  CAS  Google Scholar 

  34. Berendsen H, Grigera JR, Straatsma TP (1987) J Phys Chem 91:6269

    Article  CAS  Google Scholar 

  35. Tsai ML, Cronin N, Djordjevic S (2011) Acta Crystallogr Sect D 67:14

    Article  CAS  Google Scholar 

  36. Kwon T, Chang JH, Kwak E, Lee CW, Joachimiak A, Kim YC, Lee J, Cho Y (2003) EMBO J. 22:292

    Article  CAS  Google Scholar 

  37. Lai C-W, Chen H-L, Lin K-Y, Liu F-C, Chong K-Y, Cheng WTK, Chen C-M (2014) PLoS ONE 9:e90818

    Article  Google Scholar 

  38. Daura X, Antes I, van Gunsteren WF (1999) Proteins: Structure

  39. Burgi R, Pitera J, van Gunsteren WF (2001) J Biomol NMR 19:305

    Article  CAS  Google Scholar 

  40. Zagrovic B, van Gunsteren WF (2006) Proteins 63:210

    Article  CAS  Google Scholar 

  41. Yildirim I, Stern HA, Kennedy SD, Tubbs JD, Turner DH (2010) J Chem Theory Comput 6:1520

    Article  CAS  Google Scholar 

Download references

Acknowledgments

EVM is thankful for funding support provided by FONDECYT 11121179 and Grant ICM No 120082. DS thanks CONICYT for the graduate scholarship 21130517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Vöhringer-Martinez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saez, D.A., Vöhringer-Martinez, E. A consistent S-Adenosylmethionine force field improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation. J Comput Aided Mol Des 29, 951–961 (2015). https://doi.org/10.1007/s10822-015-9864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9864-1

Keywords

Navigation