Skip to main content
Log in

The impact of data integrity on decision making in early lead discovery

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Data driven decision making is a key element of today’s pharmaceutical research, including early drug discovery. It comprises questions like which target to pursue, which chemical series to pursue, which compound to make next, or which compound to select for advanced profiling and promotion to pre-clinical development. In the following paper we will exemplify how data integrity, i.e. the context data is generated in and auxiliary information that is provided for individual result records, can influence decision making in early lead discovery programs. In addition we will describe some approaches which we pursue at Boehringer Ingelheim to reduce the risk for getting misguided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beck B (2012) BioProfile—extract knowledge from corporate databases to assess cross-reactivities of compounds. Bioorg Med Chem 20:5428–5435

    Article  CAS  Google Scholar 

  2. Wenlock MC, Carlsson LA (2015) How experimental errors influence drug metabolism and pharmacokinetic QSAR/QSPR models. J Chem Inf Model 55:125–134

    Article  CAS  Google Scholar 

  3. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  CAS  Google Scholar 

  4. Baell JB (2015) Screening-based translation of public research encounters painful problems. ACS Med Chem Lett 6:229–234

    Article  CAS  Google Scholar 

  5. Dahlin JL, Nissink JWM, Strasser JM, Francis S, Higgins L, Zhou H, Zhang Z, Walters MA (2015) PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J Med Chem 58:2091–2113

    Article  CAS  Google Scholar 

  6. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45:1712–1722

    Article  CAS  Google Scholar 

  7. Nissink JWM, Blackburn S (2014) Quantification of frequent-hitter behavior based on historical high-throughput screening data. Future Med Chem 6:1113–1126

    Article  CAS  Google Scholar 

  8. Rishton GM (1997) Reactive compounds and in vitro false positives in HTS. Drug Discov Tod 2:382–384

    Article  CAS  Google Scholar 

  9. Roche O, Schneider P, Zuegge J, Guba W, Kansy M, Alanine A, Bleicher K, Danel F, Gutknecht EM, Rogers-Evans M, Neidhart W, Stalder H, Dillon M, Sjogren E, Fotouhi N, Gillespie P, Goodnow R, Harris W, Jones P, Taniguchi M, Tsujii S, Von der Saal W, Zimmermann G, Schneider G (2002) Development of a virtual screening method for identification of “frequent hitters” in compound libraries. J Med Chem 45:137–142

    Article  CAS  Google Scholar 

  10. Sink R, Gobec S, Pecar S, Zega A (2010) False positives in the early stages of drug discovery. Curr Top Med Chem 17:4231–4255

    Article  CAS  Google Scholar 

  11. Feng BY, Simeonov A, Jadhav A, Babaoglu K, Inglese J, Shoichet BK, Austin CP (2007) A high-throughput screen for aggregation-based inhibition in a large compound library. J Med Chem 50:2385–2390

    Article  CAS  Google Scholar 

  12. Fligge TA, Schuler A (2006) Integration of a rapid automated solubility classification into early validation of hits obtained by high throughput screening. J Pharm Biomed Anal 42:449–454

    Article  CAS  Google Scholar 

  13. Kramer C, Heinisch T, Fligge T, Beck B, Clark T (2009) A consistent dataset of kinetic solubilities for early-phase drug discovery. ChemMedChem 4:1529–1536

    Article  CAS  Google Scholar 

  14. Jadhav A, Ferreira RS, Klumpp C, Mott BT, Austin CP, Inglese J, Thomas CJ, Maloney DJ, Shoichet BK, Simeonov A (2010) Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol protease. J Med Chem 53:37–51

    Article  CAS  Google Scholar 

  15. Sullivan E, Tucker EM, Dale IL (1999) Measurement of [Ca2+] using the fluorometric imaging plate reader (FLIPR). Methods Mol Biol 114:125–133

    CAS  Google Scholar 

  16. Registered Trademark of PerkinElmer, Waltham, United States. http://www.perkinelmer.com

  17. Holdgate G, Geschwindner S, Breeze A, Davies G, Colclough N, Temesi D, Ward L (2013) Biophysical methods in drug discovery from small molecule to pharmaceutical. Methods Mol Biol 1008:327–355

    Article  CAS  Google Scholar 

  18. Ohnacker G, Kalbfleisch W (1970) CCBF—Ein System zur Computerbearbeitung chemischer und biologischer Forschungsergebnisse. Angew Chem 82:628–633

    Article  Google Scholar 

  19. Hashem Ibrahim Abaker Targio, Yaqoob Ibrar, Anuar Nor Badrul, Mokhtar Salimah, Gani Abdullah, Khan Samee Ullah (2015) big data” on cloud computing: review and open research issues. Inf Syst 47:98–115

    Article  Google Scholar 

  20. Snijders C, Matzat U, Reips U-D (2012) ‘Big data’: big gaps of knowledge in the field of Internet science. Int J Internet Sci 7:1–5

    Google Scholar 

  21. Geppert T, Beck B (2014) Fuzzy matched pairs: a means to determine the pharmacophore impact on molecular interaction. J Chem Inf Model 54:1093–1102

    Article  CAS  Google Scholar 

  22. Griffen E, Leach AG, Robb GR, Warner DJ (2011) Matched molecular pairs as a medicinal chemistry tool. J Med Chem 54:7739–7750

    Article  CAS  Google Scholar 

  23. Leach AG, Jones HD, Cosgrove DA, Kenny PW, Ruston L, MacFaul P, Wood JM, Colclough N, Law B (2006) Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. J Med Chem 49:6672–6682

    Article  CAS  Google Scholar 

  24. Bornot A, Blackett C, Engkvist O, Murray C, Bendtsen C (2014) The role of historical bioactivity data in the deconvolution of phenotypic screens. J Biomol Screen 19:696–706

    Article  Google Scholar 

  25. Lee J, Bogyo M (2013) Target deconvolution techniques in modern phenotypic profiling. Curr Opin Chem Biol 17:118–126

    Article  CAS  Google Scholar 

  26. Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Cote S, Shoichet BK, Urban L (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–367

    CAS  Google Scholar 

  27. Hu Y, Bajorath J (2014) Learning from ‘big data’: compounds and targets. Drug Discov Tod 19:357–360

    Article  Google Scholar 

  28. Kramer C, Lewis R (2012) QSARs, data and error in the modern age of drug discovery. Curr Top Med Chem 12:1896–1902

    Article  CAS  Google Scholar 

  29. Kramer C, Fuchs JE, Whitebread S, Gedeck P, Liedl KR (2014) Matched molecular pair analysis: significance and the impact of experimental uncertainty. J Med Chem 57:3786–3802

    Article  CAS  Google Scholar 

  30. http://dataconomy.com/the-four-essentials-vs-for-a-big-data-analytics-platform/

Download references

Acknowledgments

We would like to thank our colleagues Ralf Heilker, Helmut Romig, Thilo Fligge, and Frank Dullweber for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Beck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, B., Seeliger, D. & Kriegl, J.M. The impact of data integrity on decision making in early lead discovery. J Comput Aided Mol Des 29, 911–921 (2015). https://doi.org/10.1007/s10822-015-9871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9871-2

Keywords

Navigation