Skip to main content
Log in

Molecular simulation assisted identification of Ca2+ binding residues in TMEM16A

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Calcium-activated chloride channels (CaCCs) play vital roles in a variety of physiological processes. Transmembrane protein 16A (TMEM16A) has been confirmed as the molecular counterpart of CaCCs which greatly pushes the molecular insights of CaCCs forward. However, the detailed mechanism of Ca2+ binding and activating the channel is still obscure. Here, we utilized a combination of computational and electrophysiological approaches to discern the molecular mechanism by which Ca2+ regulates the gating of TMEM16A channels. The simulation results show that the first intracellular loop serves as a Ca2+ binding site including D439, E444 and E447. The experimental results indicate that a novel residue, E447, plays key role in Ca2+ binding. Compared with WT TMEM16A, E447Y produces a 30-fold increase in EC50 of Ca2+ activation and leads to a 100-fold increase in Ca2+ concentrations that is needed to fully activate the channel. The following steered molecular dynamic (SMD) simulation data suggests that the mutations at 447 reduce the Ca2+ dissociation energy. Our results indicated that both the electrical property and the size of the side-chain at residue 447 have significant effects on Ca2+ dependent gating of TMEM16A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  CAS  Google Scholar 

  2. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    Article  CAS  Google Scholar 

  3. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  CAS  Google Scholar 

  4. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  CAS  Google Scholar 

  5. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  CAS  Google Scholar 

  6. Sontz PA, Song WJ, Tezcan FA (2014) Interfacial metal coordination in engineered protein and peptide assemblies. Curr Opin Chem Biol 19:42–49

    Article  CAS  Google Scholar 

  7. Huang F, Wong X, Jan LY (2012) International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol Rev 64:1–15

    Article  CAS  Google Scholar 

  8. Tian Y, Kongsuphol P, Hug M, Ousingsawat J, Witzgall R, Schreiber R, Kunzelmann K (2011) Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB J 25:1058–1068

    Article  CAS  Google Scholar 

  9. Jung J, Nam JH, Park HW, Oh U, Yoon JH, Lee MG (2013) Dynamic modulation of ANO1/TMEM16A HCO3(–) permeability by Ca2+/calmodulin. Proc Natl Acad Sci USA 110:360–365

    Article  CAS  Google Scholar 

  10. Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516:207–212

    Article  CAS  Google Scholar 

  11. Yu K, Duran C, Qu Z, Cui YY, Hartzell HC (2012) Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. Circ Res 110:990–999

    Article  CAS  Google Scholar 

  12. Lee J, Jung J, Tak MH, Wee J, Lee B, Jang Y, Chun H, Yang DJ, Yang YD, Park SH, Han BW, Hyun S, Yu J, Cho H, Hartzell HC, Oh U (2015) Two helices in the third intracellular loop determine anoctamin 1 (TMEM16A) activation by calcium. Pflugers Arch 467:1677–1687

    Article  CAS  Google Scholar 

  13. Tien J, Peters CJ, Wong XM, Cheng T, Jan YN, Jan LY, Yang H (2014) A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity. eLife 3:e02772. doi:10.7554/eLife.02772

  14. Yang H, Zhang G, Cui J (2015) BK channels: multiple sensors, one activation gate. Front Physiol 6:29

    Google Scholar 

  15. Xiao Q, Yu K, Perez-Cornejo P, Cui Y, Arreola J, Hartzell HC (2011) Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci USA 108:8891–8896

    Article  CAS  Google Scholar 

  16. Xiao Q, Cui Y (2014) Acidic amino acids in the first intracellular loop contribute to voltage- and calcium- dependent gating of anoctamin1/TMEM16A. PLoS ONE 9:e99376

    Article  Google Scholar 

  17. Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinform 7:382

    Article  Google Scholar 

  18. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinform Chapter 5, Unit 5 6

  19. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  Google Scholar 

  20. Bashford D (1997) An object-oriented programming suite for electrostatic effects in biological molecules An experience report on the MEAD project. Sci Comput Object Oriented Parallel Environ Lect Notes Comput Sci 1343:233–240

    Google Scholar 

  21. Bashford D, Gerwert K (1992) Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol 224:473–486

    Article  CAS  Google Scholar 

  22. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  23. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312

    Article  Google Scholar 

  24. MacKerell AD, Bashford D, Bellott D, Dunbrack RL (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  25. Park S, Schulten K (2004) Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys 120:5946–5961

    Article  CAS  Google Scholar 

  26. Rathore N, Yan Q, de Pablo JJ (2004) Molecular simulation of the reversible mechanical unfolding of proteins. J Chem Phys 120:5781–5788

    Article  CAS  Google Scholar 

  27. Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys 119:8

    Google Scholar 

  28. Pang C, Cao T, Li J, Jia M, Zhang S, Ren S, An H, Zhan Y (2013) Combining fragment homology modeling with molecular dynamics aims at prediction of Ca binding sites in CaBPs. J Comput Aided Mol Des 27:697–705

    Article  CAS  Google Scholar 

  29. Ferrera L, Caputo A, Ubby I, Bussani E, Zegarra-Moran O, Ravazzolo R, Pagani F, Galietta LJ (2009) Regulation of TMEM16A chloride channel properties by alternative splicing. J Biol Chem 284:33360–33368

    Article  CAS  Google Scholar 

  30. Zhang JL, Zheng QC, Li ZQ, Zhang HX (2012) Molecular dynamics simulations suggest ligand’s binding to nicotinamidase/pyrazinamidase. PLoS ONE 7:e39546

    Article  CAS  Google Scholar 

  31. Park S, Schulten K (2009) Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys 120:5946–5961

    Article  Google Scholar 

  32. Falke JJ, Drake SK, Hazard AL, Peersen OB (1994) Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys 27:219–290

    Article  CAS  Google Scholar 

  33. Hartzell HC, Yu K, Xiao Q, Chien LT, Qu Z (2009) Anoctamin/TMEM16 family members are Ca2+-activated Cl- channels. J Physiol 587:2127–2139

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by National Nature Science Foundation of China Grants 11175055 to YZ, 113471215 to SZ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhan or Hai-Long An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, CL., Yuan, HB., Cao, TG. et al. Molecular simulation assisted identification of Ca2+ binding residues in TMEM16A. J Comput Aided Mol Des 29, 1035–1043 (2015). https://doi.org/10.1007/s10822-015-9876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9876-x

Keywords

Navigation