Skip to main content
Log in

Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Computational techniques, such as Quantitative Structure-Property Relationship (QSPR) modeling, are very useful in predicting physicochemical properties of various chemicals. Building QSPR models requires calculating molecular descriptors and the proper choice of the geometry optimization method, which will be dedicated to specific structure of tested compounds. Herein, we examine the influence of the ionic liquids’ (ILs) geometry optimization methods on the predictive ability of QSPR models by comparing three models. The models were developed based on the same experimental data on density collected for 66 ionic liquids, but with employing molecular descriptors calculated from molecular geometries optimized at three different levels of the theory, namely: (1) semi-empirical (PM7), (2) ab initio (HF/6-311+G*) and (3) density functional theory (B3LYP/6-311+G*). The model in which the descriptors were calculated by using ab initio HF/6-311+G* method indicated the best predictivity capabilities (\({\text{Q}}_{\text{EXT}}^{2}\) = 0.87). However, PM7-based model has comparable values of quality parameters (\({\text{Q}}_{\text{EXT}}^{2}\) = 0.84). Obtained results indicate that semi-empirical methods (faster and less expensive regarding CPU time) can be successfully employed to geometry optimization in QSPR studies for ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wilkes JS (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4(2):73–80. doi:10.1039/b110838g

    Article  CAS  Google Scholar 

  2. Bruzzone S, Chiappe C, Focardi SE, Pretti C, Renzi M (2011) Theoretical descriptor for the correlation of aquatic toxicity of ionic liquids by quantitative structure-toxicity relationships. Chem Eng J 175:17–23. doi:10.1016/J.Cej.08.073

    Article  CAS  Google Scholar 

  3. Das RN, Roy K (2013) Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future. Mol Divers 17(1):151–196. doi:10.1007/s11030-012-9413-y

    Article  CAS  Google Scholar 

  4. Patel R, Kumari M, Khan AB (2014) Recent advances in the applications of ionic liquids in protein stability and activity: a review. Appl Biochem Biotechnol 172(8):3701–3720. doi:10.1007/s12010-014-0813-6

    Article  CAS  Google Scholar 

  5. Paul TC, Morshed AKMM, Fox EB, Visser AE, Bridges NJ, Khan JA (2014) Thermal performance of ionic liquids for solar thermal applications. Exp Therm Fluid Sci 59:88–95. doi:10.1016/j.expthermflusci.2014.08.002

    Article  CAS  Google Scholar 

  6. Zhang R, Wang CL, Yue QH, Zhou TC, Li N, Zhang HQ, Hao XK (2014) Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection. J Sep Sci 37(21):3133–3141. doi:10.1002/Jssc.201400568

    Article  CAS  Google Scholar 

  7. Kapnissi-Christodoulou CP, Stavrou IJ, Mavroudi MC (2014) Chiral ionic liquids in chromatographic and electrophoretic separations. J Chromatogr A 1363:2–10. doi:10.1016/J.Chroma.05.059

    Article  CAS  Google Scholar 

  8. Vogl T, Menne S, Balducci A (2014) Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries. Phys Chem Chem Phys 16(45):25014–25023. doi:10.1039/c4cp03830d

    Article  CAS  Google Scholar 

  9. Lu Y, Korf K, Kambe Y, Tu Z, Archer LA (2014) Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew Chem Int Ed Engl 53(2):488–492. doi:10.1002/anie.201307137

    Article  CAS  Google Scholar 

  10. Larsson K, Binnemans K (2014) Selective extraction of metals using ionic liquids for nickel metal hydride battery recycling. Green Chem 16(10):4595–4603. doi:10.1039/C3gc41930d

    Article  CAS  Google Scholar 

  11. Nasirpour N, Mousavi SM, Shojaosadati SA (2014) A novel surfactant-assisted ionic liquid pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresour Technol 169:33–37. doi:10.1016/J.Biortech.06.023

    Article  CAS  Google Scholar 

  12. Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15(7):11922–11940. doi:10.3390/Ijms150711922

    Article  CAS  Google Scholar 

  13. Idris A, Vijayaraghavan R, Rana UA, Patti AF, MacFarlane DR (2014) Dissolution and regeneration of wool keratin in ionic liquids. Green Chem 16(5):2857–2864. doi:10.1039/C4gc00213j

    Article  CAS  Google Scholar 

  14. Muhammad N, Man Z, Bustam MA, Mutalib MIA (2012) Rafiq S (2013) Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J Ind Eng Chem 19(1):207–214. doi:10.1016/J.Jiec.08.003

    Article  Google Scholar 

  15. Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Elsevier Academic Press, Amsterdam

    Google Scholar 

  16. Roy K, Kar S, Narayan Das R (2015) A primer on QSAR/QSPR modeling. Springer, Berlin. doi:10.1007/978-3-319-17281-1

    Book  Google Scholar 

  17. Chen B-K, Liang M-J, Wu T-Y, Wang HP (2013) A high correlate and simplified QSPR for viscosity of imidazolium-based ionic liquids. Fluid Phase Equilib 350:37–42. doi:10.1016/j.fluid.2013.04.009

    Article  CAS  Google Scholar 

  18. Bai LG, Zhu JQ, Chen BH (2011) Quantitative structure-property relationship study on heat of fusion for ionic liquids. Fluid Phase Equilib 312:7–13. doi:10.1016/J.Fluid.09.005

    Article  CAS  Google Scholar 

  19. Gajewicz A, Haranczyk M, Puzyn T (2010) Predicting logarithmic values of the subcooled liquid vapor pressure of halogenated persistent organic pollutants with QSPR: how different are chlorinated and brominated congeners? Atmos Environ 44(11):1428–1436. doi:10.1016/j.atmosenv.2010.01.041

    Article  CAS  Google Scholar 

  20. Peric B, Sierra J, Marti E, Cruanas R, Garau MA, Arning J, Bottin-Weber U, Stolte S (2013) (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. J Hazard Mater 261:99–105. doi:10.1016/j.jhazmat.2013.06.070

    Article  CAS  Google Scholar 

  21. Roy K, Das RN, Popelier PL (2014) Quantitative structure-activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity. Chemosphere 112:120–127. doi:10.1016/j.chemosphere.2014.04.002

    Article  CAS  Google Scholar 

  22. Li S-L, He M-Y, Du H-G (2011) 3D-QSAR studies on a series of dihydroorotate dehydrogenase inhibitors: analogues of the active metabolite of leflunomide. Int J Mol Sci 12(12):2982–2993. doi:10.3390/ijms12052982

    Article  CAS  Google Scholar 

  23. Ruiz P, Myshkin E, Quigley P, Faroon O, Wheeler JS, Mumtaz MM, Brennan RJ (2013) Assessment of hydroxylated metabolites of polychlorinated biphenyls as potential xenoestrogens: a QSAR comparative analysis∗. SAR QSAR Environ Res 24(5):393–416. doi:10.1080/1062936x.2013.781537

    Article  CAS  Google Scholar 

  24. Cronin MTD (2010) Quantitative Structure-Activity Relationships (QSARs)—applications and methodology. In: Puzyn T, Leszczynski J, Cronin MTD (eds) Recent advances in QSAR studies. Methods and applications. Challenges and advances in computational chemistry and physics, vol 8. Springer, New York, pp 3–11. doi:10.1007/978-1-4020-9783-6

    Google Scholar 

  25. Jensen F (1999) Introduction to computational chemistry. Wiley, New York

    Google Scholar 

  26. Stewart JJ (2004) Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation. J Mol Model 10(1):6–12. doi:10.1007/s00894-003-0157-6

    Article  CAS  Google Scholar 

  27. Young DC (2001) Computational chemistry: a practical guide for applying techniques to real-world problems. Wiley-Interscience, New York

  28. Katritzky AR, Lomaka A, Petrukhin R, Jain R, Karelson M, Visser AE, Rogers RD (2002) QSPR Correlation of the melting point for pyridinium bromides, potential ionic liquids. J Chem Inf Model 42(1):71–74. doi:10.1021/ci0100503

    Article  CAS  Google Scholar 

  29. Ma S, Lv M, Zhang X, Zhai H, Lv W (2015) Computational study of the effects of cations and anions to the cytotoxicity of diverse ionic liquids by supervised machine learning. Chemometrics Intell Lab Syst 144:138–147. doi:10.1016/j.chemolab.2015.03.014

    Article  CAS  Google Scholar 

  30. Yu G, Wen L, Zhao D, Asumana C, Chen X (2013) QSPR study on the viscosity of bis(trifluoromethylsulfonyl)imide-based ionic liquids. J Mol Liq 184:51–59. doi:10.1016/j.molliq.2013.04.021

    Article  CAS  Google Scholar 

  31. Bai L, Zhu J, Chen B (2011) Quantitative structure–property relationship study on heat of fusion for ionic liquids. Fluid Phase Equilib 312:7–13. doi:10.1016/j.fluid.2011.09.005

    Article  CAS  Google Scholar 

  32. Dong Q, Muzny CD, Kazakov A, Diky V, Magee JW, Widegren JA, Chirico RD, Marsh KN, Frenkel M (2007) ILThermo: a free-access web database for thermodynamic properties of ionic liquids. J Chem Eng Data 52(4):1151–1159. doi:10.1021/Je700171f

    Article  CAS  Google Scholar 

  33. Dennington R, Keith T, Millam J (2009) GaussView, 5th edn. Semichem Inc., Kansas

    Google Scholar 

  34. Stewart JJP (2012) MOPAC2012. Stewart Computational Chemistry, Colorado Springs

    Google Scholar 

  35. Wan J, Zhang L, Yang G, Zhan CG (2004) Quantitative Structure-Activity Relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors: a study of quantum chemical descriptors from density functional theory. J Chem Inf Model 44(6):2099–2105. doi:10.1021/ci049793p

    Article  CAS  Google Scholar 

  36. Rasulev BF, Abdullaev ND, Syrov VN, Leszczynski J (2005) A Quantitative Structure-Activity Relationship (QSAR) study of the antioxidant activity of flavonoids. QSAR Comb Sci 24(9):1056–1065. doi:10.1002/qsar.200430013

    Article  CAS  Google Scholar 

  37. Puzyn T, Suzuki N, Haranczyk M, Rak J (2008) Calculation of quantum-mechanical descriptors for QSPR at the DFT level: is it necessary? J Chem Inf Model 48(6):1174–1180. doi:10.1021/Ci800021p

    Article  CAS  Google Scholar 

  38. Kušić H, Rasulev B, Leszczynska D, Leszczynski J, Koprivanac N (2009) Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: a QSAR study. Chemosphere 75(8):1128–1134. doi:10.1016/j.chemosphere.2009.01.019

    Article  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Fo Ogliaro, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ăd, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  40. Talete (2014) Dragon (software for molecular descriptor calculation), 6.0, Milano. http://www.talete.mi.it/

  41. Puzyn T, Mostrag-Szlichtyng A, Gajewicz A, Skrzyński M, Worth AP (2011) Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct Chem 22(4):795–804. doi:10.1007/s11224-011-9757-4

    Article  CAS  Google Scholar 

  42. Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34(24):2121–2132. doi:10.1002/Jcc.23361

    Article  CAS  Google Scholar 

  43. Gramatica P, Cassani S, Chirico N (2014) QSARINS-chem: insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comput Chem 35(13):1036–1044. doi:10.1002/jcc.23576

    Article  CAS  Google Scholar 

  44. OECD (2004) The report from the expert group on (quantitative) structure activity relationship [(Q)SARs] on the principles for the validation of (Q)SARs. Series on testing and assessment No. 49 (ENV/JM/MONO(2004)24). Organisation of Economic Cooperation and Development, Paris

  45. Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R (2012) Comparison of different approaches to define the applicability domain of QSAR models. Molecules 17(5):4791–4810. doi:10.3390/molecules17054791

    Article  CAS  Google Scholar 

  46. Gramatica P (2013) On the development and validation of QSAR models. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol 930., Methods in molecular biologyHumana Press, New York, pp 499–526. doi:10.1007/978-1-62703-059-5_21

    Chapter  Google Scholar 

  47. Sahlin U, Jeliazkova N, Oberg T (2014) Applicability domain dependent predictive uncertainty in QSAR regressions. Mol Inform 33(1):26–35. doi:10.1002/Minf.201200131

    Article  CAS  Google Scholar 

  48. Netzeva T, Worth AP, Aldenberg T, Benigni R, Cronin M, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz G, Perkins R, Roberts DW, Schultz TW, Stanton DT, van de Sandt J, Tong W, Veith G, Yang C (2005) Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships. The report and recommendations of ECVAM workshop 52. alternatives to laboratory animals, vol 33

  49. Gramatica P, Cassani S, Roy PP, Kovarich S, Yap CW, Papa E (2012) QSAR modeling is not “push a button and find a correlation”: a case study of toxicity of (benzo-)triazoles on algae. Mol Inf 31(11–12):817–835. doi:10.1002/minf.201200075

    Article  CAS  Google Scholar 

  50. Gramatica P (2010) Chemometric methods and theoretical molecular descriptors in predictive QSAR modeling of the environmental behavior of organic pollutants. In: Puzyn T, Leszczynski J, Cronin MTD (eds) Recent advances in QSAR studies. Methods and applications, vol 8. Springer, New York, pp 327–366. doi:10.1007/978-1-4020-9783-6

    Chapter  Google Scholar 

  51. Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chem Intell Lab Syst 145:22–29. doi:10.1016/j.chemolab.2015.04.013

    Article  CAS  Google Scholar 

  52. Gramatica P, Giani E, Papa E (2007) Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. J Mol Graph Model 25(6):755–766. doi:10.1016/j.jmgm.2006.06.005

    Article  CAS  Google Scholar 

  53. Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51(9):2320–2335. doi:10.1021/ci200211n

    Article  CAS  Google Scholar 

  54. Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S, Das RN (2013) Some case studies on application of “rm2” metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data. J Comput Chem 34(12):1071–1082. doi:10.1002/jcc.23231

    Article  CAS  Google Scholar 

  55. Toth G, Bodai Z, Heberger K (2013) Estimation of influential points in any data set from coefficient of determination and its leave-one-out cross-validated counterpart. J Comput Aided Mol Des 27(10):837–844. doi:10.1007/S10822-013-9680-4

    Article  CAS  Google Scholar 

  56. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26(5):694–701. doi:10.1002/Qsar.200610151

    Article  CAS  Google Scholar 

  57. Devinyak O, Havrylyuk D, Lesyk R (2014) 3D-MoRSE descriptors explained. J Mol Graph Model 54:194–203. doi:10.1016/j.jmgm.2014.10.006

    Article  CAS  Google Scholar 

  58. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics. Wiley, Weinheim

    Book  Google Scholar 

  59. Rinnan Å, Christensen NJ, Engelsen SB (2009) How the energy evaluation method used in the geometry optimization step affect the quality of the subsequent QSAR/QSPR models. J Comput Aided Mol Des 24(1):17–22. doi:10.1007/s10822-009-9308-x

    Article  Google Scholar 

  60. Roy K, Popelier PLA (2008) Exploring predictive QSAR models for hepatocyte toxicity of phenols using QTMS descriptors. Bioorg Med Chem Lett 18(8):2604–2609. doi:10.1016/j.bmcl.2008.03.035

    Article  CAS  Google Scholar 

  61. Kar S, Harding AP, Roy K, Popelier PLA (2010) QSAR with quantum topological molecular similarity indices: toxicity of aromatic aldehydes to Tetrahymena pyriformis. SAR QSAR Environ Res 21(1–2):149–168. doi:10.1080/10629360903568697

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to express gratitude to Prof Paola Gramatica for access to QSARINS software. This material is based on research funded by the National Science Center (Poland) (Grant No. UMO-2012/05/E/NZ7/01148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Puzyn.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybinska, A., Sosnowska, A., Barycki, M. et al. Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids. J Comput Aided Mol Des 30, 165–176 (2016). https://doi.org/10.1007/s10822-016-9894-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9894-3

Keywords

Navigation