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Abstract In the context of the SAMPL5 blinded challenge standard free energies
of binding were predicted for a dataset of 22 small guest molecules and three
different host molecules octa-acids (OAH and OAMe) and a cucurbituril (CBC).
Three sets of predictions were submitted, each based on different variations of
classical molecular dynamics alchemical free energy calculation protocols based on
the double annihilation method. The first model (model A) yields a free energy
of binding based on computed free energy changes in solvated and host-guest
complex phases; the second (model B) adds long range dispersion corrections to the
previous result; the third (model C ) uses an additional standard state correction
term to account for the use of distance restraints during the molecular dynamics
simulations. Model C performs the best in terms of mean unsigned error for all
guests (MUE 3.2 < 3.4 < 3.6 kcal·mol−1 – 95% confidence interval–) for the
whole data set and in particular for the octa-acid systems (MUE 1.7 < 1.9 <
2.1 kcal·mol−1). The overall correlation with experimental data for all models is
encouraging (R2 0.65 < 0.70 < 0.75). The correlation between experimental and
computational free energy of binding ranks as one of the highest with respect to
other entries in the challenge. Nonetheless the large MUE for the best performing
model highlights systematic errors, and submissions from other groups fared better
with respect to this metric.

Keywords SAMPL5 · binding free energies · host-guest systems

1 Introduction

An accurate and reliable computational prediction of binding affinities of small
molecules binding to larger molecules, such as proteins, remains a major objective
of computer simulations for molecular design [1]. In order to assess state-of-the-
art tools for computational predictions of thermodynamic properties of binding
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the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL)
challenge was formulated almost 10 years ago [2–4]. The goal of SAMPL5, as in
previous years, was to compare different computational approaches in blinded chal-
lenges for different properties. This report is concerned with host-guest standard
binding free energies, as predicted by our group.

Host-guest systems can be regarded as a toy model for protein ligand sys-
tems and represent a good play ground for testing the accuracy of thermodynamic
property predictions.Various computational methods are available to compute free
energies of binding of the host-guest systems [5–8]. Previous SAMPL challenges
have featured potential energy functions ranging from quantum chemical [9–11]
to molecular mechanical approaches [12,13]. Molecular dynamics (MD) or Monte
Carlo (MC) simulations are frequently carried out to estimate the ensemble av-
erages that yield standard free energies of binding. These methodologies still face
three major problems: the sampling problem[14], the translation of host-guest sys-
tems into force field terms[15] and the presence of finite size effects[16]. Different
approximations lead to various ways of estimating free energies of binding from
molecular simulations trajectories, .e.g. free energy perturbations (FEP) [17], fi-
nite difference thermodynamic integration (FDTI) [18], or end-states only variants
such as MM-PBSA [19].

In this study a trajectory based alchemical free energy approach was used to
predict standard free energies of binding for 22 host-guest complexes. The dataset
consists of 16 guests that bind to three different molecules: two octa-acid hosts
(OAH and OAMe), and a cucurbituril clip (CBC) as shown in Fig. 1. The octa-
acid systems are basket shaped. OAH [20] has four flexible propionate side chains
bearing two rotatable single bonds each, while, OAMe contains four methyl groups,
which alter the shape and depth of the hydrophobic cavity. CBC [21,22] is a more
flexible host, which has shown a high binding affinity for ferrocene, adamantane
and bicyclooctane guests [23]. The aim of this paper is to illustrate the accuracy
and agreement with experiments that can be reached by means of standard free
energy of binding calculations using a molecular mechanics approach with the
general Amber forcefield (GAFF) [24]. In recent studies by Mirshra et al. and
Aldeghi et al. [25,26] the GAFF force field has not systematically been the most
accurate forcefield, but it remains an attractive choice due to the ease of parameter
generation, especially given the limited time available in SAMPL between datasets
release and deadline for predictions submissions. The performance of three different
variants of a double annihilation methodology for binding free energy predictions
is critically assessed, as well as overall standing with respect to other SAMPL5
submissions.

2 Theory and Methods

Several approaches have been proposed to compute standard free energies of
binding from molecular simulations.

Computing free energies of binding: models A, B, and C
One way of estimating a free energy of binding ∆Gbind from MD simulations is
by means of a double annihilation technique proposed originally by Jorgensen et
al. [27] and discussed extensively by Gilson et al. [28]. The free energy of binding
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A

     
   OAH         OAMe       G1    G2    G3    G4   G5   G6    O1

B

 
   
    CBC    CBC     G1     G2   G3  G4   G5    G6     G7     G8       G9   G10

Fig. 1 A Octa-acid systems OAH and OAMe and their respective six guests, plus SAMPL4
guest O1. B Cucurbituril clip CBC and its ten guests.

∆Gbind is given by:

∆Gbind = −kBT ln
ZHG,solvZsolv

ZG,solvZH,solv
, (1)

where kB is the Boltzmann constant, T the temperature, ZHG,solv, ZG,solv, ZH,solv

and Zsolv are the configuration integral for host-guest complex, the guest, the host
and the solvent molecules respectively. Fig. 2 depicts how the double annihilation
approach may be used to evaluate ∆Gbind by means of thermodynamic cycles.
First the guest’s partial charges are turned off both in water and in the host-
guest-complex phase (discharging step), giving the discharging free energy change
∆Gsolv

elec and ∆Ghost
elec respectively. Secondly, the guest is fully decoupled from the

solvent or host, switching off the van der Waals terms (vanishing step), ∆Gsolv
vdW

and ∆Ghost
vdW. The discharging and vanishing steps are usually performed with a

series of intermediate simulations that depend on a coupling parameter λ ∈ [0, 1].
In the double annihilation method the term ∆Grest shown in Fig 2 is zero (see
details below). Closure of the thermodynamic cycle in Fig 2 shows that in the
double annihilation technique the free energy of binding ∆Gbind is given as:[29]

∆Gbind = (∆Gsolv
elec +∆Gsolv

vdW)− (∆Ghost
elec +∆Ghost

vdW). (2)

Free energies of binding computed according to eq. 2, will be referred to as
model A. In the actual MD simulation an empirical distance-restraint term is added
to the potential energy function. This is done to prevent the non-interacting guest
from drifting out of the host cavity. A flat-bottom restraining potential is used
between one atom of the guest, chosen to be the one closest to the centre of mass,
and four equivalent carbon atoms of the host. The restraint potential for atom j
of the guest is based on work presented in ref [5] and takes the following form:

U restr(dij) =

Nhost∑
i=1

{
0 if |dij −Rij | ≤ Dij

κij (|dij −Rij | −Dij)2 if |dij −Rij | > Dij

, (3)
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Fig. 2 Thermodynamic cycle for free energy of binding calculation. First, a fully interacting
ligand is simulated in a water phase (top left), then charges and Lennard Jones terms are
switched off sequentially, resulting in a fully non-interacting ligand in water (bottom left). The
same transformation is performed in the complex, going from a fully interacting ligand (top
right) to a dummy ligand (bottom right). The middle step (middle two panels) is concerned
with the evaluation of a free energy change associated with the introduction of a host-guest
restraining potential in the complex simulations. This term is neglected in model A and model
B, and numerically evaluated with respect to standard state conditions in model C. Conse-
quently model A and model B yield a free energy of binding ∆Gbind, whereas model C yields
a standard free energy of binding ∆G0

bind.

where U restr(dij) is the potential energy of the restraint as a function of the dis-
tance between a guest and a host atom dij = ||rj − ri|| where || ◦ || denotes a
2-norm, Dij is the restraint deviation tolerance, Rij the reference distance be-
tween host and guest atom, κij the restraint force constant, and Nhost the number
of host atoms that contribute to the restraint.
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Model A neglects, among other things, the contribution of long range dispersions,
since a cutoff for the Lennard Jones interaction was set to 12 Å to speed up
simulations (see protocols). Following work from Shirts et al. [30], it is possible to
introduce a long range dispersion correction term to the free energy of binding as
a post processing step of the simulation trajectories. This leads to a corrected free
energy of binding ∆Gbind,LJRC given by:

∆Gbind,LJLRC = (∆Gsolv
elec +∆Gsolv

vdW)

− (∆Ghost
elec +∆Ghost

vdW)

+ (∆Ghost
LJLRC +∆Gsolv

LJLRC).

(4)

Eq. 4 gives the free energy of binding for model B, where the Lennard Jones disper-
sion correction ∆GX

LJLRC can be computed making use of the Zwanzig relation [31]
in the following way:

∆GX
LJLRC = kBT ln〈exp[−β(ULJ,long(r)− ULJ,sim(r)]〉X − ULJ,ana, (5)

where X= host or solv, ULJ,long is the Lennard Jones energy computed with an
increased long range cutoff and ULJ,ana(r) is an analytical correction from the
increased range long cutoff to infinity. The long range correction ULJ,long is esti-
mated in a post processing step of the ’vanishing’ trajectories generated at λ = 0
and λ = 1, by extending the domain of the typical Lennard Jones cutoff radius
in the simulation from 12 Å to cover almost the entire box instead. To define this
long cutoff, the minimum box length in all directions in the input coordinates is
calculated, and the new cutoff radius is set to rc,long = 0.95 min(Lx, Ly, Lz)/2 to
allow for some fluctuations in box size. This allows an averaging over the whole
trajectory of the additional contribution of the long range potential ULJ,long, with
respect to the simulated Lennard Jones term ULJ,sim. This correction, however,
does not account for an infinitely large box size giving rise to an analytical cor-
rection over an infinite domain, which is the additive constant given below:

ULJ,ana = 8πρ

Nsol∑
i

Nsolv∑
j

[
εijσ

12
ij

9r9c
−
εijσ

6
ij

3r3c

]
, (6)

where ρ is the solvent density in mol·Å−3, Nsol is the total number of atoms in the
guest, Nsolv the number of solvent molecules, εij is the Lennard Jones well depth,
expressed in kcal·mol−1, and σij is the Lennard Jones distance, in Å, calculated
with the Lorentz-Berthelot combining rule [32]. Lennard Jones parameters for the
solvent are those of the oxygen atom of the TIP3P water model [33]. It is implicitly
assumed that the radial distribution function g(r)=1 for rc > r.
Both model A and model B lack a well defined reference state in their definition
of the free energy change upon binding of the guest molecules. Therefore a third
model is proposed to enable a standard state definition. For this purpose the
standard state correction is subtracted from the free energy of binding given by
eq. 4. The standard free energy of binding is given by:

∆G◦bind = (∆Gsolv
elec +∆Gsolv

vdW)

− (∆Ghost
elec +∆Ghost

vdW)

+ (∆Ghost
LJLRC +∆Gsolv

LJLRC) +∆G◦restr,

(7)
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where ∆G◦restr accounts for the introduced flat-bottom restraint. Considering the
cycle in fig. 2, the restraint free energy change can be computed as:

∆G◦restr = −kBT ln

(
ZH◦◦Gideal,solv

ZH,solvZGgas

)
, (8)

where ZH◦◦Gideal,solv is the configuration integral for the restrained decoupled guest
bound to the host, ZH,solv is the configuration integral for the solvated host and
ZGgas

is the configuration integral for the guest in an ideal thermodynamic state.
Assuming that the restraint potential is decoupled from the solvent and host de-
grees of freedom, eq.8 simplifies to:

∆G◦restr = −kBT ln

(
Z◦◦Gideal,solv

ZGgas

)
, (9)

where Z◦◦Gideal,solv is the configuration integral for the decoupled guest. Because
the guest has no intermolecular interactions in both thermodynamic states defined
in eq. 9, and because the restraint does not hinder rotational motions, internal
and rotational contributions to the configuration integrals cancel out and the only
term left is the translational contribution to the configuration integral. For ZGgas

a
standard volume of measurement V ◦ is used, with the 1 M dilute solute convention
corresponding to V ◦ = 1660 Å3·molecule−1. Therefore eq. 9 simplifies further to:

∆G◦restr = −kBT ln

(
V restr

V ◦

)
, (10)

where the restraint volume V restr is given by:

V restr =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dxj dyj dzj exp(−βU(rj1, . . . , rjNhost

)). (11)

V restr can be calculated by numerically integrating eq. 11. The following
procedure was used for this. First, the coordinates of the host-guest complex
in the generated trajectory at λ = 1 of the vanishing step was aligned to the
first frame of the trajectory. Then, the average coordinate of each of the four
host atoms used for the restraint was computed. Next, a grid spacing and an
integration domain needed to be defined. The grid spacing was set to 0.1 Å and
the integration domain was defined by the rectangular cuboid that is given by
the minimum/maximum coordinates of the four defined host atoms with an
additional buffer around the bounding domain of ± 5 Å. Numerical integration
was then performed via the multidimensional trapezoidal rule.

Host-Guest simulation set-up
Host-guest input files were used as provided by the challenge organizers. For the
simulations of the solvated guests, guest force field parameters and coordinates
were extracted from the provided topologies and the guests were solvated in a
rectangular box of TIP3P water molecules [33], with a minimum distance between
the solute and the box of 12 Å, using the software tleap. Ions were added to neutral-
ize the overall charge of the box. The system was energy minimized with 100 steps
of the steepest decent algorithm. The following equilibration protocol was used:
Solute molecules were position restrained with a force constant of 10 kcal·mol−1·
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Å−2, while the water was allowed to equilibrate in an NVT ensemble for 200 ps
at 298 K, followed by an NPT equilibration for a further 200 ps and a pressure
of 1 atm using the Amber module Sander[34]. Lastly, 2 ns of NPT simulation was
run with Sire/OpenMM6.3 (SOMD) software (revision 2015.0.0) [35,36], to reach
a final density of about 1 g/cm3 using a timestep of 1 fs. The final coordinate
files were retrieved with CPPTRAJ [37]. The same protocol for preparation and
equilibration was used for the host-guest complex.
Additionally, the reference system OAH-O1, taken from the SAMPL4 chal-
lenge [38], was set-up from scratch. Guest O1 was obtained from the modification
of compound G6 using Maestro (v.10.1.012, rel 2015-1, Schrödinger) [39] and
further parametrized using AM1-BCC charges [40] using Antechamber 14 [34].
Complex and water phase systems were created with tleap, according to the above
protocol, using the same binding mode as the one provided for G6.

Alchemical free energy production simulations
For the discharging steps nine equidistant λ windows were selected for the host-
guest complex and the guest in water phases. For the vanishing step 12 and 18
equidistant windows were used for octa-acid guests and CBC guests respectively.
The reasoning behind these different choices was that the CBC guests were
larger therefore a denser number of λ windows was deemed necessary in order
to guarantee good overlap of the potential energy distributions of neighbouring
λ windows, which is essential for free energy estimation via multistate Bennett’s
acceptance ratio (MBAR) [41]. All simulations were run for 8 ns. A velocity-Verlet
integrator was used with a time step of 4 fs using a hydrogen mass repartitioning
(HMR) scheme [42]. All bonds were constrained. All simulations were performed
in an NPT ensemble and temperature control was achieved with an Andersen
Thermostat with a coupling constant of 10 ps−1 [43]. Pressure was maintained
by a Monte Carlo barostat that attempted isotropic box edge scaling every 100
fs. Periodic boundary conditions were imposed with a 12 Å atom-based cutoff
distance for the non-bonded interactions, using a Barker Watts reaction field with
dielectric constant of 78.3 [44]. In the host-guest complex the guest molecules
were restrained according to eq. 3. The parameters were Rij = 5 Å, Dij = 2
Å and κij = 10 kcal·mol−1· Å−2.

Estimation of free energy changes for models A, B, and C
Individual free energy contributions from the discharging and vanishing steps were
estimated by using MBAR [41]. To estimate the accuracy and consistency of the
computed binding free energy from eq. 2, each simulation was repeated twice
using different initial assignments of velocities drawn from the Maxwell-Boltzmann
distribution. Final binding free energies are reported as the average of both runs
and statistical uncertainties were calculated according:

err(∆G) =
σ√
n
, (12)

where σ is the standard deviation of both runs and n=2 unless otherwise men-
tioned.

The computed binding free energies with each model are then compared to
experimental values considering two different measures: the determination coeffi-
cient R2 and mean unsigned error (MUE). To gain insight into the distribution
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of the two different measures a bootstrapping scheme is used in which each
computed free energy point is considered to be a normal distribution with its
mean given by the computed free energy and σ the associated computed error.
Ten thousand samples are then drawn from the artificial normal distributions
for each data point and correlated with the experimental values, giving rise to
a distribution of R2 and MUE. The resulting distributions are typically not
symmetric around the mean and uncertainties in the dataset metrics are reported
with a 95% confidence interval. All simulation input files and post processing
scripts needed for reproducing the results, as well results files, can be found in a
github repository https://github.com/michellab/Sire-SAMPL5.

Experimental data
Experimental data for the host-guest complexes of the octa-acids were obtained by
a mixture of NMR and ITC measurements. CBC host-guest complexes standard
free energy of binding were obtained using UV, visible, and florescent spectroscopic
measurements. All data was measured in the laboratory of Bruce Gibb (Tulane
University), with detailed description of the two octacid hosts found in [20,45].
Details on the experimental procedures and error analysis of the experimental data
will be described elsewhere [46]. A summary of the experimental data used for the
analysis in this work, as provided by the organizers, can be found in table 1.

3 Results

Host-Guest binding free energy predictions
To test the precision and accuracy of the protocols implementing the three mod-
els A, B, and C the free energy of binding of guest O1 to host OAH (used in
SAMPL4) was retrospectively predicted. Fig. 3 compares the results with experi-
mental data [38]. Both models A,B yield a similar free energy of binding ∆Gbind

= -6.1 ± 0.5 kcal·mol−1. This is because the long-range corrections for Lennard
Jones interactions implemented in model B produce a negligible correction term
of of 0.03 kcal·mol−1. By contrast, the addition of a standard state correction
in model C leads to a standard free energy of binding of ∆G◦bind=-4.4 ± 0.5
kcal·mol−1 which is in good agreement with the experimental data of ∆G◦bind
=-3.7±0.1 kcal·mol−1 [38].

Next, blinded predictions were performed for each SAMPL5 host-guest. Fig-
ure 4 contrasts the predictive power of the different models against the experimen-
tal data that was released after submission of the predictions. Figure 4 A, shows
the results for model A, B for model B and C for model C respectively. Results
for each host-guest system are also reported in table 1. Taking the full dataset
into account, all three models yield a similar R2 value of ca. 0.64 < 0.7 < 0.75.
Models A,B have a similar MUE of ca. 4.3 < 4.5 < 4.7 kcal·mol−1, whereas model
C is statistically more accurate, with a MUE of ca. 3.2 < 3.4 < 3.6 kcal·mol−1.
The accuracy of the predictions for the three different hosts was also considered
individually and summarised in table 1. As judged by the MUE measures, the
models perform better across the octa-acid systems than for CBC. In particular,
model C gives the best predictions compared to A and B for octa-acid systems,
with a MUE of 1.7 < 2.1 < 2.4 kcal·mol−1 and 1.4 < 1.7 < 2.0 0.3 kcal·mol−1 for
OAH and OAMe respectively. R2 is on average slightly higher for both octa-acid
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A        B        C     Exp     

Fig. 3 Comparison of the computed binding free energy ∆Gbind according to models A, B
and the computed standard binding free energy ∆G◦bind according to model C with respect to
experimental data for the SAMPL4 OAH-O1 complex.

hosts (R2: 0.77 < 0.87 < 0.93, model C for OAH and R2: 0.52 < 0.74 < 0.93,
model C for OAMe) than CBC (R2: 0.7 < 0.76 < 0.82) for models A, B and C,
but the trend is not strong given statistical uncertainties.

Next, attention is focussed on the guests for which predictions showed the
largest discrepancy with respect to experimental data. For instance, the standard
free energy of binding of guest G5 in complex with both OAH and OAMe is over-
estimated by -3.6 kcal·mol−1 and -2.8 kcal·mol−1 respectively. Guest G4 is also
significantly stabilised in complex with OAH. G4 is arguably the most hydropho-
bic guest in the series studied and evidence from our accompanying distribution
coefficient article suggest that the GAFF force field appear to favor the trans-
fer of hydrophobic solutes into hydrophobic environments [47]. Since G5 is the
largest outlier in both octa-acid hosts, the validity of its simulated binding mode
was evaluated. For this purpose, G5 in the host-guest complexes was rotated by
approximately 180◦ degrees about its centre of mass such that the amine group
pointed towards the bottom of the host cavities, and calculations were repeated
using these new coordinates after solvent equilibration. Binding free energy pre-
dictions from model C obtained for this alternative binding mode were poor (
∆G◦bind= +1.8±0.1 kcal·mol−1 and +16.7±0.1 kcal·mol−1 for OAH and OAMe
respectively), suggesting that the original binding mode is more likely.

For the CBC host, the best MUE is about 4.8 < 5.1 < 5.4 kcal·mol−1 for model
C, with no significant difference over model A and B. This is surprising since the
determination coefficient R2 : 0.65 < 0.76 < 0.81 is quite reasonable. In particular,
model C performs better than A and B, but large errors are present for a series of
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A

B

C

R2:     0.63 < 0.70 < 0.74    
MUE: 4.3 < 4.5 < 4.8 kcal mol-1

R2:      0.64 < 0.70 < 0.74    
MUE:  4.3 < 4.5 < 4.7 kcal mol-1

R2:      0.65 < 0.70 < 0.75    
MUE:  3.12 < 3.4 < 3.6 kcal mol-1

Fig. 4 A Comparison of the binding free energy ∆Gbind to experiments according to model
A and model B in B and standard binding free energy of ∆G◦bind according to model C with
respect to experimental results in C for all host-guest systems. The red line indicates ideal
correlation between experiments and computed results and the yellow shaded region gives a
binding free energy error bound of 1 kcal·mol−1. OAH systems are colored in blue, OAMe in
green and CBC in red. Error bars denote ± eq of 12.
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Fig. 5 Comparison between standard binding free energies computed with model C (blue)
and with the attach-pull-release method (red) for OAH in A and OAMe in B.

guests. Guests G2 and G3 are predicted to bind substantially worse than observed
in experiments. The main difference with other guests in this dataset is that these
two molecules are made up of linear flexible alkyl chains, and contain several
(presumably) positively charged ammonium groups. By contrast, G4-G7, G9 and
G10 are predicted to bind significantly better than experimentally observed. These
compounds present a variety of net charges, but are all made up of conjugated
aromatic rings. Additionally, empirical pKA estimations [48] suggest that G5, G6,
G9 and G10 could adopt multiple protonation states at the pH where binding
constants were measured. Hence, it is unclear whether the discrepancies are due
to forcefield errors or finite-size effects.

As a separate issue, the reproducibility of standard free energies of binding
was evaluated by comparing the results from model C with those reported by the
Gilson lab (UCSD) for the octa-acid hosts [49]. The same input files were used,
but the free energy calculations were performed with the pmemd.cuda program
from AMBER 14 [50], and a different potential of mean force based ’attach-pull-
release’ (APR) methodology [51]. Figure 5 shows that a good agreement is observed
between both OAH ( 5A) and OAMe ( 5B) hosts, with a mean unsigned differ-
ences of about 0.4 kcal·mol−1 in the former case and 0.6 kcal·mol−1 for the latter.
At first glance this level of variability seems reasonable given the typical statis-
tical uncertainties of each methodology. Nonetheless closer inspection indicates
that OAH-G5, OAMe-G5 and OAMe-G4 show significant discrepancies. Since the
model C standard free energies of binding were only estimated from two repeats a
concern was that the error estimates were not reliable. To test this two additional
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repeats were performed for these systems. The standard free energies of binding
obtained from four repeats of model C are: ∆G◦bind(SOMD, OAH-G5)= -6.9±0.1,
∆G◦bind(SOMD, OAMe-G4)= -3.4±0.2 , ∆G◦bind(SOMD, OAMe-G5)= -6.5±0.3
kcal·mol−1 respectively. The results were statistically identical to those obtained
from two repeats (table 1) for OAMe-G4 and OAMe-G5, but not OAH-G5. Per-
sonal discussions with the Gilson lab prompted additional APR calculations which
produced revised values for ∆G◦bind(APR, OAMe-G4)= -4.3±0.3 kcal·mol−1, and
∆G◦bind(APR, OAH-G5)= -4.5±0.5 kcal·mol−1. However, discrepancies remain
and further work is needed to establish the protocol variations that introduced
this variability in the computed standard free energies of binding.

4 Conclusions

The present alchemical free energy calculation protocols proved reasonably re-
producible (table 1). This was unexpected given the size of the guests that was
deemed large for an absolute binding free energy calculation, suggesting that longer
per-λ simulation time than what was used here would be necessary. Factors that
may have contributed to this outcome include the relative rigidity of some of the
guests, the rapid relaxation of the hosts upon guest decoupling, the symmetry of
the hosts, and the use of distance restraints to limit translational motions of the de-
coupled guests. Encouragingly, the results were also reasonably predictive, at least
when judged by correlation with experiment (R2 0.65 < 0.70 < 0.74). Indeed, the
SAMPL5 submissions for models A,B,C were among the top-performing protocols
of this entire competition with respect to this metric. Nevertheless, systematic er-
rors are present and the same models do not fare as well when ranked according to
a mean unsigned error metric. Model B yields results that are identical to model A
since the long range correction for missing dispersion interactions is essentially neg-
ligible. This was unexpected given previous reports that this should be expected
to have a significant contribution to standard free energies of binding [30]. For the
systems considered here it seems that the simulation cutoffs used were sufficient
to include most of the guest-host dispersion interactions. Satisfactorily, addition
of a standard state correction term in model C systematically improves agreement
with experimental data. In addition the computed standard free energies of bind-
ing for model C agree well with those produced independently by members of the
Gilson lab (UCSD) using a different code and methodology. However it is not cur-
rently understood why a few compounds show more significant deviations between
the double annihilation and APR methodologies and this should receive further
attention. It is well known that the computation of free energies of solvation of
charged solutes via molecular simulations is typically affected by significant finite-
size effects [52–55]. Given the broad range of net charges in the guests considered
here, it is perhaps surprising that encouraging R2 values were obtained. For the
host-guest binding energies reported here errors due to finite-size electrostatics is
mitigated since partial error compensation occur between the simulations of the
solvated guest and the host-guest complex. However, it seems reasonable to antic-
ipate that the significant MUE values would be decreased with the use of suitable
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schemes to reduce or eliminate finite-size errors1. Other areas where further im-
provement could be sought for this dataset include the explicit consideration of
multiple tautomeric forms of the guests, as well as a more systematic evaluation
of alternative potential energy functions.
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that a coding error led to incorrect evaluation of the correction terms.
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Table 1 Binding free energy, in kcal·mol−1, determination coefficient R2, mean unsigned
error (MUE), in kcal·mol−1, model A, B and C. Uncertainties in the calculated individual
binding free energies are the standard error of the mean. Dataset metrics are given with a 95%
confidence interval.

OAH

∆Gbind A ∆Gbind B ∆G◦bind C Experimental

G1 -8.5± 0.3 -8.6±0.3 -6.9±0.3 -5.04±0.01

G2 -6.9± 0.2 -6.8±0.1 -5.2±0.1 -4.25±0.01

G3 -9.0±0.2 -8.9±0.1 -7.3±0.1 -5.06±0.01

G4 -14.3±0.4 -14.4±1.2 -12.8±0.4 -9.37±0.002

G5 -8.7±0.4 -8.7±0.4 -7.7±0.4 -4.50±0.001

G6 -7.8±0.1 -7.8±0.1 -6.1±0.1 -5.33±0.004

MUE 3.3 < 3.7 < 4.0 3.3 < 3.6 < 4.0 1.7 < 2.1 < 2.5

R2 0.83 < 0.91 < 0.96 0.83 < 0.91 < 0.96 0.77 < 0.87 < 0.93

OAMe

∆Gbind A ∆Gbind B ∆G◦bind C Experimental

G1 -8.4±0.1 -8.4±0.1 -6.8±0.1 -5.24±0.05

G2 -9.2±0.7 -9.3±0.7 -7.6±0.7 -5.04±0.03

G3 -9.1±0.1 -9.1±0.1 -7.4±0.1 -5.94±0.12

G4 -5.0±0.1 -5.0±0.2 -3.4±0.2 -2.38±0.102

G5 -8.4±0.7 -8.3±0.8 -6.7±0.8 -3.9±0.02

G6 -7.3±0.1 -7.3±0.2 -5.6±0.1 -4.52±0.02

MUE 3.1 < 3.4 < 3.7 3.1 < 3.4 < 3.7 1.5 < 1.7 < 2.0

R2 0.51 < 0.73 < 0.93 0.52 < 0.74 < 0.92 0.52 < 0.74 < 0.93

CBC

∆Gbind A ∆Gbind B ∆G◦bind C Experimental

G1 -7.5±0.4 -7.3±0.4 -6.1±0.1 -5.8±0.03

G2 -0.1±0.1 -0.1±0.1 1.2±0.6 -2.5±0.07

G3 0.1±0.1 0.2±0.1 1.5±0.1 -4.02±0.03

G4 -11.4±0.2 -11.3±0.2 -10.1±0.2 -7.24±0.03

G5 -15.4±0.3 -15.2±0.3 -14.0±0.4 -8.53±0.07

G6 -18.6±0.2 -18.5±0.2 -17.1±0.2 -8.64±0.05

G7 -13.6±1.2 -13.5±1.2 -12.3±1.2 -5.17±0.02

G8 -4.4±1.1 -4.4±1.1 -3.0±1.1 -6.17±0.04

G9 -16.2±0.1 -16.2±0.1 -15.0±0.1 -7.4±0.02

G10 -18.6±0.2 -18.5±0.2 -17.3±0.2 -10.35±0.02

MUE 5.4 < 5.7 < 6.0 5.3 < 5.6 < 5.9 4.8 < 5.1 < 5.4

R2 0.70 < 0.76 < 0.81 0.70 < 0.76 < 0.82 0.69 < 0.76 < 0.82
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