Skip to main content
Log in

Azahar: a PyMOL plugin for construction, visualization and analysis of glycan molecules

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Glycans are key molecules in many physiological and pathological processes. As with other molecules, like proteins, visualization of the 3D structures of glycans adds valuable information for understanding their biological function. Hence, here we introduce Azahar, a computing environment for the creation, visualization and analysis of glycan molecules. Azahar is implemented in Python and works as a plugin for the well known PyMOL package (Schrodinger in The PyMOL molecular graphics system, version 1.3r1, 2010). Besides the already available visualization and analysis options provided by PyMOL, Azahar includes 3 cartoon-like representations and tools for 3D structure caracterization such as a comformational search using a Monte Carlo with minimization routine and also tools to analyse single glycans or trajectories/ensembles including the calculation of radius of gyration, Ramachandran plots and hydrogen bonds. Azahar is freely available to download from http://www.pymolwiki.org/index.php/Azahar and the source code is available at https://github.com/agustinaarroyuelo/Azahar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schrodinger L (2010) The PyMOL molecular graphics system, version 1.3r1

  2. National Research Council (US) (2012) Transforming glycoscience: a roadmap for the future. The national academies collection: reports funded by National Institutes of Health. National Academies Press (US), Washington (DC). http://www.ncbi.nlm.nih.gov/books/NBK109958/

  3. Campbell MP, Ranzinger R, Lutteke T, Mariethoz J, Hayes CA, Zhang J, Akune Y, Aoki-Kinoshita KF, Damerell D, Carta G, York WS, Haslam SM, Narimatsu H, Rudd PM, Karlsson NG, Packer NH, Lisacek F (2014) BMC Bioinformatics 15(Suppl 1):S9. doi:10.1186/1471-2105-15-S1-S9. http://www.biomedcentral.com/1471-2105/15/S1/S9/abstract

  4. Ohtsubo K, Marth JD (2006) Cell 126(5):855. doi:10.1016/j.cell.2006.08.019

    Article  CAS  Google Scholar 

  5. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) (2009) Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY). http://www.ncbi.nlm.nih.gov/books/NBK1908/

  6. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:90. doi:10.1038/srep00090

  7. Ranzinger R, Frank M, Von der Lieth CW, Herget S (2009) Glycobiology 19(12):1563. doi:10.1093/glycob/cwp137. http://glycob.oxfordjournals.org/content/19/12/1563

  8. Engelsen SB, Hansen PI, Pérez S (2014) Biopolymers 101(7):733. doi:10.1002/bip.22449

    Article  CAS  Google Scholar 

  9. Ceroni A, Dell A, Haslam SM (2007) Source Code Biol Med 2(1):1. doi:10.1186/1751-0473-2-3

    Article  Google Scholar 

  10. Kuttel M, Mao Y, Widmalm G, Lundborg M (2011) CarbBuilder: an adjustable tool for building 3D molecular structures of carbohydrates for molecular simulation. In: Proceedings of the 7th IEEE International Conference e-Science, Dec 2011, pp 395–402. doi:10.1109/eScience.2011.61

  11. van Rossum G (1995) Python programming language version 2:7

  12. Walt SVD, Colbert SC, Varoquaux G (2011) Comput Sci Eng 13(2):22. doi:10.1109/MCSE.2011.37

    Article  Google Scholar 

  13. Hunter JD (2007) Comput Sci Eng 9(3):90. doi:10.1109/MCSE.2007.55

    Article  Google Scholar 

  14. Shipman JW (2013) Tkinter 8.5 reference: a gui for python. http://infohost.nmt.edu/tcc/help/pubs/tkinter/tkinter.pdf

  15. http://www.wwpdb.org/documentation/file-format

  16. Lütteke T, von der Lieth CW (2004) BMC Bioinform 5(1):1. doi:10.1186/1471-2105-5-69

    Article  Google Scholar 

  17. Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Mol Biol 42(4):623. doi:10.1134/S0026893308040195

    Article  CAS  Google Scholar 

  18. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33

    Article  CAS  Google Scholar 

  19. Li Z, Scheraga HA (1987) Proc Natl Acad Sci 84(19):6611. http://www.pnas.org/content/84/19/6611.short. Bibtex: li_monte_1987

  20. Hastings WK (1970) Biometrika 57(1):97. doi:10.1093/biomet/57.1.97

    Article  Google Scholar 

  21. Nayeem A, Vila J, Scheraga HA (1991) J Comput Chem 12(5):594. doi:10.1002/jcc.540120509. Bibtex: nayeem_comparative_1991

  22. Halgren TA (1996) J Comput Chem 17(5–6):490. doi:10.1002/(SICI)1096-987X(199604)17:5/6<490:AID-JCC1>3.0.CO;2-P

    Article  CAS  Google Scholar 

  23. O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G (2011) J Cheminformatics 3(1):33. doi:10.1186/1758-2946-3-33. http://www.jcheminf.com/content/3/1/33

  24. Shrake A, Rupley J (1973) J Mol Biol 79(2):351–371

    Article  CAS  Google Scholar 

  25. Vila J, Williams RL, Vásquez M, Scheraga HA (1991) Proteins 10(3):199. doi:10.1002/prot.340100305

    Article  CAS  Google Scholar 

  26. Garay PG, Martin OA, Scheraga HA, Vila JA (2014) J Comput Chem 35(25):1854. doi:10.1002/jcc.23697

    Article  CAS  Google Scholar 

  27. Lutteke T, Frank M, von der Lieth CW (2005) Nucleic acids research 33(Database issue), D242. doi:10.1093/nar/gki013. Bibtex: lutteke_carbohydrate_2005

  28. Esteban C (2016) Doctoral thesis (personal communication)

  29. Frank TLM, von der Lieth CW (2007). http://www.glycosciences.de/tools/glytorsion/

  30. Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208:42–49. doi:10.1016/j.plantsci.2013.03.007

    Article  CAS  Google Scholar 

  31. Lederle FA, Freischlag JA, Kyriakides TC et al (2009) Outcomes following endovascular vs open repair of abdominal aortic aneurysm: a randomized trial. JAMA 302(14):1535–1542. doi:10.1001/jama.2009.1426

    Article  CAS  Google Scholar 

  32. Fernandez JG, Ingber DE (2014) Macromol Mater Eng 299(8):932. doi:10.1002/mame.201300426

    Article  CAS  Google Scholar 

  33. Berendsen H, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91(1–3):43. doi:10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  34. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) J Comput Chem 25(13):1656. doi:10.1002/jcc.20090

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by: A Warren L. DeLano Memorial PyMOL Open-Source Fellowship; PIP-0030 from CONICET-Argentina; and PICT-2014-0556 from ANPCyT-Argentina.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Agustina Arroyuelo or Osvaldo A. Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroyuelo, A., Vila, J.A. & Martin, O.A. Azahar: a PyMOL plugin for construction, visualization and analysis of glycan molecules. J Comput Aided Mol Des 30, 619–624 (2016). https://doi.org/10.1007/s10822-016-9944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9944-x

Keywords

Navigation