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Abstract

In the recent SAMPL5 challenge, participants submitted predictions for cyclohexane/water 

distribution coefficients for a set of 53 small molecules. Distribution coefficients (log D) replace 

the hydration free energies that were a central part of the past five SAMPL challenges. A wide 

variety of computational methods were represented by the 76 submissions from 18 participating 

groups. Here, we analyze submissions by a variety of error metrics and provide details for a 

number of reference calculations we performed. As in the SAMPL4 challenge, we assessed the 

ability of participants to evaluate not just their statistical uncertainty, but their model uncertainty – 

how well they can predict the magnitude of their model or force field error for specific predictions. 

Unfortunately, this remains an area where prediction and analysis need improvement. In SAMPL4 

the top performing submissions achieved a root-mean-squared error (RMSE) around 1.5 kcal/mol. 

If we anticipate accuracy in log D predictions to be similar to the hydration free energy predictions 

in SAMPL4, the expected error here would be around 1.54 log units. Only a few submissions had 

an RMSE below 2.5 log units in their predicted log D values. However, distribution coefficients 
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introduced complexities not present in past SAMPL challenges, including tautomer enumeration, 

that are likely to be important in predicting biomolecular properties of interest to drug discovery, 

therefore some decrease in accuracy would be expected. Overall, the SAMPL5 distribution 

coefficient challenge provided great insight into the importance of modeling a variety of physical 

effects. We believe these types of measurements will be a promising source of data for future blind 

challenges, especially in view of the relatively straightforward nature of the experiments and the 

level of insight provided.
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1 Introduction

This year’s Statistical Assessment of Modeling of Proteins and Ligand (SAMPL) challenge 

focuses on prediction of cyclohexane-water distribution coefficients. The inclusion of 

distribution coefficients replaces the previous focus on hydration free energies which was a 

fixture of the past five challenges (SAMPL0-4) [1–7]. Due to a lack of ongoing experimental 

work to generate new data, hydration free energies are no longer a practical property to 

include in blind challenges. It has become increasingly difficult to find unpublished or 

obscure hydration free energies and therefore impossible to design a challenge focusing on 

target compounds, functional groups or chemical classes. But this type of data is extremely 

valuable — the past SAMPL challenges have driven real improvements in a variety of 

methods for calculating hydration free energies [1] — so we sought to include a similar 

physical property in SAMPL5. The organizers of SAMPL5 settled on cyclohexane-water 

distribution coefficients, and thanks to a partnership with Genentech, this led to a series of 

measurements on drug-like compounds, discussed in detail in this issue [8]. The 

experimental measurements are also straightforward enough that future distribution 

coefficient challenges can be deliberately designed to focus on issues that merit attention to 

move the field forward.

Partition and distribution coefficients are important physical properties [9,10] which can 

provide a valuable opportunity for testing computational methods and molecular models. 

Distribution coefficients describe how all forms of a solute distributes itself across two 

immiscible solvents. In this case,

(1)

where Xi represents a single protonation or tautomeric state of the solute in one of the 

solvents, and the sum runs over all protonation and tautomeric states [10]. Results are 

reported as the logarithm of this ratio (log D). These are more complicated than partition 

coefficients (log P), which measure the concentration of the neutral solute in both solvents 

[9]. Specifically, if only one tautomer is relevant, log P is proportional to the transfer free 
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energy, and can be calculated from solvation free energies [11–21]. In contrast, all relevant 

charged and neutral forms of the solute will need to be included to accurately calculate log 

D, which can be estimated from a calculated log P and the relative populations of 

protonation states and tautomers in each solvent. Thus, accurate tautomer enumeration in 

both solvents may be an important part of predicting log D, introducing new complexities to 

the SAMPL challenge which were avoided in previous hydration free energy challenges.

Here we give an overview of the analysis done for the SAMPL5 challenge, including the 

compounds considered, overall performance of submissions, and the metrics used for 

analysis. We also include details for a set of reference calculations we performed estimating 

log D as the cyclohexane/water partition coefficient as well as a series of follow-up studies 

focusing on the importance of tautomers in estimating log D. Overall, we believe the 

outcome of the present SAMPL5 challenge highlights the potential benefits of this type of 

experimental data to improve computational methods, force fields, sampling algorithms, and 

treatment of protonation states and tautomers. Many of these issues will be highly relevant 

for nominally more challenging problems, such as predictions of protein-ligand binding 

affinities.

2 Challenge Logistics

SAMPL5 began on September 15, 2015 when the specifications and input files for the 

challenge were made available on the D3R website (http://drugdesigndata.org); these are 

also provided in the supporting information, made available on the University of California 

Dash (http://n2t.net/ark:/b7280/d1988w). The challenge deadline was February 2, 2016 and 

experimental results were provided to participants not long after. As in past SAMPL 

challenges, each group could submit multiple sets of predictions. There was also the option 

for participants’ identities to remain anonymous, although their results and method 

descriptions would still be made available. A total of 76 prediction sets from 18 participants 

or participating groups were submitted and assigned a random 2 digit ID number, 01 to 76, 

that will be used throughout this paper. Predictions were analyzed and overview statistics, as 

well as individual analysis of each submission by various error metrics (as detailed below) 

were returned to each participant. The challenge culminated with discussions of participants 

experiences and results at the 1st D3R Workshop at the University of California, San Diego 

March 9–11, 2016.

For the prediction of distribution coefficients in SAMPL5, a total of 53 molecules were 

considered. They were assigned an identifier in the form SAMPL5_XXX and are pictured in 

table 2. The 53 molecules were divided into batches 0, 1, and 2 containing 13, 20, and 20 

molecules respectively. We wanted each batch to have a similar dynamic range and for the 

molecules to increase in size across batches, so on average the smallest molecules are in 

batch 0 and the largest in batch 2. To ensure each batch had adequate dynamic range, the 

molecular weight and estimated octanol/water partition coefficient were computed for each 

compound. These partition coefficients were estimated with OpenEye’s log P calculator. 

Molecules were then assigned to bins by estimated partition coefficient, and assigned to 

batches based on molecular weight. Specifically, the smallest molecules from each partition 
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coefficient bin were added to batch 0, then batch 1, and the rest of the molecules comprise 

batch 2.

Participants could submit partial sets of predictions as long as they included full consecutive 

batches; that is, they could submit batch 0, batches 0 and 1, or batches 0, 1, and 2. The idea 

was that all participants should attempt predictions on the full set if at all possible, but 

grouping into batches would allow people with particularly demanding methods (such as 

polarizable force fields or methods requiring intensive quantum mechanics) to focus on 

smaller compounds and still be evaluated. Eight submissions from two participants included 

results for only batch 0, and an additional five submissions from two participants provided 

only batches 0 and 1. Here we focus on the results for the complete set of molecules 

(batches 0, 1, and 2). Separate analysis for data subsets is available in the supporting 

information on Dash.

Participants were asked to report a cyclohexane/water distribution coefficient for each 

molecule. As discussed above, distribution coefficients are the ratio of concentrations for all 

forms of the solute in the cyclohexane and aqueous layers, at a specified pH. In this case, 

experiments were done with the water layer consisting of a buffered aqueous solution at pH 

7.4. We also required participants to provide two estimates for uncertainty, a statistical 

uncertainty for their computational method and a model uncertainty that estimates 

agreement with experiment. The statistical uncertainty was intended to be the variation 

expected over repeated calculations of the same value. The model uncertainty, on the other 

hand, was intended to provide an estimate of how well the calculated value will agree with 

experiment. For example, in a recent study we computed cyclohexane/water partition 

coefficients using alchemical solvation free energy calculations in GROMACS where the 

statistical uncertainties were around 0.05 log units, but the root mean squared error was 

around 1.4 log units [23], so an appropriate estimated model uncertainty would have been 

1.4 log units. A careful analysis of expected error could even yield model uncertainties 

which would vary based on the anticipated difficulty or complexity of a compound. Our 

interest in model uncertainties is in part based on the realization that an important part of 

creating predictive models is the ability to know when they will be unreliable or fail. Thus, 

analysis of model uncertainties is an important part of evaluating any model.

3 Analysis of Submission Performance

As in past SAMPL challenges, we considered a variety of error metrics in analyzing all 

predictions submitted to SAMPL5. Each error metric was calculated for all submissions, by 

batch, and distributed to challenge participants before the workshop. Here we will focus 

primarily on six error metrics: the root-mean-squared error (RMSE), average unsigned error 

(AUE), average signed error (ASE), Pearson’s R (R), Kendall’s tau (tau), and the ‘error 

slope’ explained in depth below. We also calculated the maximum absolute error and the 

percent of predictions with the correct sign, but these are not included in the analysis here. 

However, these metrics were provided to challenge participants and are available in the 

supporting information on Dash. The uncertainty in each metric was calculated as the 

standard deviation over 1000 bootstrap trials, where each trial consists of creating a ‘new’ 

dataset by sampling pairs of (predicted, calculated) values from the original set, with 
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replacement. As described previously, this bootstrapping technique also included variation in 

the experimental values based on their reported uncertainties [1].

As discussed above, an important factor influencing the utility of a predictive tool is the 

ability of the tool to not only provide predictions but to predict the accuracy of those 

predictions – that is, how well the calculated values are likely to agree with experiment – not 

just its statistical error. To assess this, as in SAMPL4 [1], a quantile-quantile plot (QQ Plot) 

was created for each prediction set [24]. QQ Plots compare the fraction of a normal 

distribution within a specified number of standard deviations to the distribution of errors 

(calculated minus experiment) that are within that number of model uncertainties. For 

example, consider the number of predictions within one standard deviation of the expected 

value; if the samples are drawn from a normal distribution, then 0.68 of the values ought to 

fall within one standard deviation, so the value on the x-axis is 0.68. The value on the y-axis 

will represent the fraction of predictions that are within one model uncertainty of the 

experimental value. If the model uncertainty is accurate, then this also ought to correspond 

to a value of 0.68. A linear regression analysis helps summarize these results. The ‘error 

slope’ is the slope of the line comparing the fraction of predictions within a specified range 

of experiment to the expected fraction from a normal distribution. An error slope of greater 

than one indicates that the calculated values are within uncertainty of experiment more often 

than expected, or in other words the model uncertainty was overestimated. In contrast, an 

error slope less than one suggests the model uncertainty was underestimated.

We also attempted to identify any individual molecules where most of the methods failed to 

accurately estimate the distribution coefficient. To accomplish this, we analyzed all 

predictions on a molecule-by-molecule basis via our usual set of error metrics. Here we will 

primarily focus on just average unsigned error for molecules, but all other error metrics were 

provided to participants and are available in supporting information on Dash.

4 Reference calculations

We calculated distribution coefficients through a few different methods as a reference. 

K.H.B., a graduate student in the Mobley group, performed a set of blind calculations 

estimating the log D as a partition coefficient between cyclohexane and water calculated 

from solvation free energies. In addition, C.C.B. and D.L.M. performed post-challenge 

analysis of protonation and tautomeric states and used this to convert our calculated partition 

coefficients to distribution coefficients. We considered a null hypothesis where all molecules 

are assumed to distribute equally between cyclohexane and water. Many fast structure-based 

tools for octanol/water partition coefficients exist, and we used one of those to estimate 

partition coefficients, both with no correction for the fact that we are interested in 

cyclohexane, and with a small adjustment for this as discussed below.

4.1 Calculating partition coefficients from solvation free energies

We decided to estimate distribution coefficients via a log P calculation, by assuming only a 

single neutral tautomer of each solute, then calculating log P from a difference in solvation 

free energies. Before the challenge, each molecule was taken directly from the provided 

SMILES string. As demonstrated in the literature, [11–21] partition coefficients are directly 
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proportional to the difference between the solvation free energy for the solute into each 

solvent. We use previously established and automated protocols [23] to calculate the 

solvation free energy of each molecule into water and cyclohexane. Then the calculated 

partition coefficient was reported as an estimate for log D.

To calculate solvation free energies, we used automated tools created by the Mobley lab. 

Molecular dynamics simulations were performed in GROMACS [25–31] with the General 

AMBER Force Field (GAFF) [32] with AM1-BCC charges [33,34]. The TIP3P water model 

[35] was used for the aqueous phase. Topology and coordinate files for the solvated boxes 

with 1 solute molecule and 500 cyclohexane or 1000 water molecules were built using our 

Solvation Toolkit [23]. These files were then converted to AMBER, DESMOND, and 

LAMMPS formats and provided to SAMPL5 participants as reference calculations. The 

Solvation Toolkit takes advantage of many open source Python modules and is available at 

https://github.com/MobleyLab/SolvationToolkit. It converts SMILES strings or IUPAC 

names of any mixture of small organic compounds to parameterized molecules and builds 

topology and coordinate files for a variety of simulation packages. All molecular dynamics 

parameters are identical to previous studies [36, 4, 23]. The molecule is taken from the 

solvated box to a non-interacting gas phase in 20 lambda values. Solvation free energies are 

calculated with Alchemical Analysis tool [37] using the multi-state Bennett acceptance ratio 

to extract the free energy difference between the beginning and end state. The partition 

coefficient was calculated as the difference between the cyclohexane solvation free energy 

and the hydration free energy. The statistical uncertainty was reported as the propagated 

uncertainty from the solvation free energy calculations. The model uncertainty was 

estimated to be the same for all molecules and reported as the root-mean-squared error from 

a recent study on calculating cyclohexane/water partition coefficient, specifically 1.4 log 

units [23]. These reference calculations were assigned submission ID 39 and included in the 

error analysis performed on all submissions.

Simulation box size does not affect the calculated solvation free energy—
Hydration free energies were previously shown to be independent of box size for box edges 

ranging from 2 to 9 nanometers, within calculated uncertainties [38]; however, here, because 

cyclohexane is much less polar, we had some concern that finite size effects could still be 

significant. To explore this, we performed some tests in which we varied the simulation box 

size. Because more polar solutes are more likely to have substantial long range interactions, 

we calculated the dipole moment of each SAMPL5 molecule using the position and charges 

on atoms in the mol2 files. SAMPL5_024 had the largest dipole moment so it was used as 

the solute for the box size investigation. The solvation free energy calculations were set up 

as described above, changing the number of cyclohexane molecules from 100 to 500. Our 

calculations above are performed with lattice-sum (PME) treatment of coulomb interactions. 

It was the primary focus of this check and we included duplicate calculations for the smaller 

box sizes where the initial coordinate file was the same, but new velocities were generated 

for the equilibrium phases. We also repeated the solvation free energy calculations with 

reaction field coulomb interactions assigning the dielectric coefficient for cyclohexane, 

2.0243 [39]. For both types of simulation, the calculated solvation free energy fluctuated 

around an average of 19.1 kcal/mol with no trend that would suggest solvation free energy 
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depends on box size (figure 1). There are many other explanations for fluctuations in 

calculated solvation free energies, including sampling, that might account for the 0.48 

kcal/mol range in the PME simulations. Ultimately, we find that box edge lengths from 2.64 

to 4.54 nm have no significant affect on the calculated solvation free energies. This suggests 

that in the future, smaller box sizes could be used for computational efficiency. The input, 

results, molecular dynamics parameter and coordinate files, and tables of solvation free 

energies are available in the supporting information on Dash.

4.2 Consideration of tautomers after SAMPL5

To help understand how the results from our partition coefficient calculations could have 

been improved, we considered corrections for changes in the solutes’ protonation or 

tautomeric states. Distribution coefficients differ from partition coefficients in that they 

include all forms of the solute in both solvents. A common way to convert between 

experimentally measured distribution coefficients and partition coefficients is with pKa 

values for the solute [40]. This is a simple correction using the Henderson-Hasselbalch 

equation:

(2)

to relate the concentration of neutral species to the charged species at a given pH. This 

correction assumes the solute only has one other relevant protonation state and changes for 

acidic and basic molecules. Zwitterions and other neutral tautomers are not taken into 

account. The equation used to calculate a distribution coefficient (log D) from a partition 

coefficient (log P) for a basic solute (or X in equation 2) is below

(3)

Alternatively for an acidic solute (or HX in equation 2) we would instead use:

(4)

We use Schrödinger’s Epik tool [41–43] to estimate pKa values for each molecule according 

to experimental conditions. We then estimated log D using the equations above, accounting 

for just one change in protonation state, meaning each solute was taken to be either acidic or 

basic. For acidic solutes, the smallest acidic pKa was used with equation 4, oppositely for 

basic solutes the largest basic pKa was used with equation 3 to estimate log D from log P.

Using pKa values only accounts for one change in protonation, whereas a correct 

distribution coefficient should include all relevant tautomers and protonation states of the 

molecule in both solvents. To account for all other tautomer states, we used Schrödinger’s 

LigPrep [44] to enumerate tautomers for each molecule in the aqueous solution. The results 
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of the enumeration can include an energetic “state penalty” calculated with Epik which 

relates the population of that tautomer to all others. This state penalty can be converted into 

log units and used as a correction term to convert log P to log D:

(5)

where kB is Boltzmann constant and T is temperature. LigPrep can only perform the 

tautomer enumeration with water or DMSO as a solvent, so we were unable to predict 

tautomers in cyclohexane. Therefore both of these corrections account for the protonation or 

tautomer states only in the aqueous layer and assume the tautomer remains fixed in 

cyclohexane as the one used in the initial simulation. In the results section below, the 

corrections performed with pKa and the corrections made with the the calculated state 

penalty are referred to  and log Dstate penalty respectively.

4.3 Estimating distribution coefficients with a fast, structural based partition coefficient 
calculator

Many structure-based tools exist for octanol/water partition coefficients; they are very fast 

and generally accurate. However, these tools are all trained on empirical data, meaning they 

are limited by the training data. We chose the OpenEye tool OEXlogP [45,46] as an example 

of such a tool. Two post-prediction sets were prepared with the OEXlogP tool. First, the 

predicted octanol/water partition coefficient was considered an estimate for cyclohexane/

water distribution coefficient. In the second set, we used a linear regression to correct for the 

bias between the calculated XlogP values and a set of experimental cyclohexane/water 

partition coefficients [9]. For the rest of this paper we will refer to the octanol/water partition 

coefficient set as XlogPoct and the bias-corrected set as XlogPcorr.

4.4 Exploring the possibility of mixing solvents

Because no two solvents are perfectly immiscible, we wanted to explore the effect that a 

small amount of water present in cyclohexane would have on computed log D values for one 

of the more polar solutes. The experimental concentration of water in cyclohexane is 

0.00047 mole fraction [47]. The presence of water in the cyclohexane phase has a possibility 

of affecting the transfer free energy, especially for solutes with many polar functional 

groups. Also, it has been suggested that particularly polar compounds can pull water with 

them from the aqueous layer into the organic solvent [9]; while this is a kinetic argument 

and should not apply to equilibrium thermodynamic properties like log D, the point is well 

taken — some solutes have a particularly high affinity for water and may actually impact the 

amount of water present in cyclohexane when the solute is present at finite concentration. 

Thus, to investigate this, we took one of the most polar compounds – one for which we had 

particularly large errors relative to experiment – SAMPL5_074, and performed two 

additional sets of free energy calculations in cyclohexane. Both sets of simulations had the 

single solute in 150 cyclohexane molecules, but varied in water content – the first with seven 

water molecules present in cyclohexane, and the second with only a single water molecule. 

The input files for these simulations were also created with Solvation Toolkit as described 
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above and the same simulation protocol was followed. These simulations were conducted 

after the SAMPL submission deadline in order to help us understand the role of water in 

such cases.

The experiments were not done on completely pure water and cyclohexane – particularly, 

experimental distribution coefficients were measured with small amounts of dimethyl 

sulfoxide (DMSO) and acetonitrile present in solution. Therefore, we investigated the how 

acetonitrile and DMSO would distribute in simulations. The experimental concentrations 

reported for each solvent are approximately 50%, 50%, 1%, and 0.4% by volume for 

cyclohexane, water, DMSO, and acetonitrile respectively [8]. To explore how the DMSO and 

acetonitrile distribute between cyclohexane and water we performed a single simulation with 

130 cyclohexane, 780 water, four DMSO, and two acetonitrile molecules mirroring those 

concentrations. Input topology and coordinate files were created with Solvation Toolkit. The 

system was minimized and equilibrated following our reference calculation procedure and 

then a 5 ns constant pressure and temperature production simulation was run. The trajectory 

from this simulation was visualized with VMD [48] and a movie is available in the 

supplementary information.

5 Results and Discussion

A broad range of methods were used for the 76 submissions predicting cyclohexane/water 

distribution coefficients for the SAMPL5 challenge. Many of these predictions used 

alchemical molecular dynamics simulations to estimate the solvation free energy in explicit 

solvent using several classes of force fields, including fixed-charge all-atom force fields [49–

53], all-atom/coarse-grained hybrid force fields [54], and polarizable force fields [55]. One 

participant used Semi-Explicit Assembly, a type of implicit solvent solvation free energy 

method applied to one or more chosen solute conformations [56]. A variety of quantum 

mechanics (QM) methods were also used including QM/molecular mechanics (QM/MM) 

with explicit solvent [52, 53], QM with non-Boltzmann Bennett free energy calculations [52, 

53], and QM energy calculations with a single optimized molecular geometry [52, 57]. Two 

participants used variations on the reference interaction-site model (RISM), an integral 

equation approach, to predict solvation free energies [58, 59]. One participant used QM 

calculations to derive parameters to tune an empirical model for activity coefficients and 

used these to estimate distribution coefficients [60]. A few submissions used empirically 

trained methods for calculating solvation free energies [61, 62]. A particularly successful 

submission, which will be discussed again below, employed the Conductor-Like-Screening 

Model for Real Solvents (COSMO-RS) [63].

SAMPL5 is the first SAMPL challenge to include distribution coefficients, but we can 

estimate how well we expect submissions to do based on past SAMPL challenges which 

included hydration free energies. Distribution coefficients can be related to transfer free 

energy between solvents, which allows us to estimate an expected performance from root-

mean-squared error (RMSE) in past hydration free energy calculations. In SAMPL4 [1], the 

average RMSE for the best half of submissions was about 1.5 kcal/mol which would 

correspond to a 1.54 log unit error in a distribution coefficient if both solvation free energies 

have comparable errors. Here, only five submissions had an RMSE less than 2.5 log units in 
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SAMPL5. There are many reasons for this perceived change in accuracy, such as a more 

complex set of molecules, the use of cyclohexane as a solvent, and the complexity of 

estimating tautomer populations, discussed in depth below. Since this is the first challenge 

on predicting distribution coefficients, it is likely that participants had not yet developed 

good protocols to deal with many of these challenges, meaning that somewhat less accuracy 

ought to be expected. It took several challenges focused on hydration [1–7] before a range of 

methods could achieve the success noted in SAMPL4.

As discussed above, we calculated root-mean-squared error (RMSE), average unsigned error 

(AUE), average signed error (ASE), Pearson’s R (R), Kendall’s tau (tau), and the slope from 

the QQ plot (error slope) for each set of predictions. These are reported for all submissions 

(Table 5), but the rest of the analysis will focus only on submissions that reported results for 

batches 0, 1, and 2. For each submission, we also created a plot comparing the predicted and 

experimental values. Some example plots are provided (Fig. 2); these represent a typical 

submission, in that these submissions were in the middle of the pack by most error metrics. 

Comparison and QQ plots for every submission are available in the supporting information 

on Dash as well as error metric tables by batch rather than just for the full set.

To help visualize all of the error metrics, the data was compiled into a histogram where 

results are sorted from best to worst for that metric (closest to 1 for error slope for example). 

These metrics are split into measurements of deviation from experiment (Fig. 3) and 

correlation with experiment (Fig. 4) distinctions which helped in identifying high 

performing groups. This analysis included only submissions that included data for all 

molecules; the other submissions were indicated in Table 5 and generally fall in the middle 

of the pack on most metrics. In comparing methods by all of the error metrics, it is important 

to keep in mind the uncertainty in these error metrics. While figures 3 and 4 are ordered by 

method performance in some sense, the reality is that there are many submissions that are 

not significantly different from one another.

In the error slope analysis, the slopes are often substantially different from 1, indicating that 

participants generally provided poor estimates of model uncertainty. Only the top three 

submissions are within uncertainty of 1. Sebastian Diaz-Rodriguez et. al from Miami 

University used conservative estimates based on results in previous calculations for 

solubility and hydration free energy for submissions 53 and 60 [60]. Gerhard König et. al 
from Max-Planck-Institut für Kohlenforschung provided no explicit discussion of model 

uncertainty with submission 43 [53]. Only submission 40 significantly overestimated their 

model uncertainty. All other submissions have an error slope below one, indicating a 

significant underestimation of the model uncertainty. This suggests that analysis and 

prediction of model uncertainty remains a key frontier for predictive molecular simulations, 

and further effort is needed in that area.

5.1 Top performing submissions

In order to determine which submissions performed the best, we group error metrics into 

two categories. The first category describes typical error relative to experiment, and includes 

metrics RMSE and AUE. The second category describes how well correlated the 

experimental values are with the experimental values, and includes Kendall τ and Pearson R. 
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Unlike past SAMPL challenges, there does appear to be one submission which performs 

best by all of these metrics, submission 16, and for most metrics it is better by a statistically 

significant amount. Next, we considered the top ten submissions for each of these four 

metrics. There were only two submissions, other than 16, which performed in the top ten for 

at least three of these metrics, 14 and 36. Predictions from each of these submissions are 

compared to experiment in figure 5. For submission 16, Andreas Klamt et. al. from 

COSMOlogic used COSMO-RS to compute a partition coefficient for each solute from the 

difference in chemical potentials for the solute in each solvent [63]. To find distribution 

coefficients, calculations for the formation of different protonation states, zwitterions, and 

tautomers were performed in COSMO-RS for relevant molecules. For submission 14, Frank 

Pickard et al. from the National Institute of Health calculated solvation free energies from 

QM calculations with SMD implicit solvent in Gaussian. Absolute pKa calculations were 

used to account for additional ionization states [52]. For submission 36, Sherin Shanaka 

Paranhewage et al. from Oklahoma State University estimated log D as a partition 

coefficient, calculated from the difference in alchemical solvation free energies where the 

solute was parameterized with the dielectrically corrected general AMBER force field, water 

was the dielectrically corrected H2O-DC model, and cyclohexane was a specially optimized 

united-atom model [49]. Further details for each of these submissions can be found in this 

issue so only a brief explanation of each method was provided here.

5.2 Comparisons to simple empirical models

One way of evaluating predictive models is to compare them to a null hypothesis, or default 

result of some kind. In the case of distribution coefficients, we chose a null hypothesis where 

we assume all solute molecules distribute equally between cyclohexane and water, 

corresponding to log D = 0, as suggested by Christopher Fennell [64]. We performed all our 

standard error analyses discussed above (RMSE, AUE, and Ave. Err) on this simple model 

as a point of comparison (Table 5.2). The null hypothesis would have been the top 

submission for both RMSE and AUE. While this null hypothesis has no actual predictive 

power and could not be used to rank compounds, the fact that it performs better than any 

submission in terms of error statistics is a challenge for the other methods. These results 

may also provide commentary on the dataset, which contains a reasonably large percentage 

of log D values that are not that far off from zero (figure 6). Organizers had hoped to ensure 

equal coverage of all log D values within the assay range, but due to experimental time 

constraints this was not possible. It is possible the null model would look worse if the 

experimental results were more evenly dispersed across the entire dynamic range.

There are many structure-based and/or empirically trained prediction methods for octanol/

water partition coefficients. To a first approximation, one might imagine that cyclohexane/

water partition coefficients would follow similar trends to those in octanol/water. Therefore, 

we used OEXlogP from Openeye (XlogPoct) to examine the possibility of estimating 

cyclohexane/water distribution coefficients with such a tool. Next, we compared XlogPoct 

results for a set of compounds with experimental cyclohexane/water partition coefficients 

[9]. A linear regression was used to correct the XlogPoct values with a slope of 0.7241 and a 

y-intercept of −1.0306 (XlogPcorr). XlogPoct would be in the top few submissions by tau and 

R, but ranked in the middle for all other metrics (Table 5.2). However, with a simple linear 
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regression trained on experimental cyclohexane/water partition coefficients, XlogPcorr has a 

better RMSE and AUE than any SAMPL5 submission. We do not wish to suggest that 

regression-trained tools are the best mechanism for predicting distribution coefficients; 

rather, this indicates the potential for cyclohexane/water distribution data to help drive 

improvements in our physical models, as clearly there are a range of physical effects here 

which are not yet well described by our models.

5.3 Results of reference calculations

We performed a set of blind reference calculations (submission 39) for the SAMPL5 

challenge, calculating log P for the provided neutral tautomers of all solutes. Our protocol 

for these calculations was announced in advance, and parameter and coordinate files for the 

calculations were made available (as described above) in formats for a variety of simulation 

packages. Participants were encouraged to perform their own set of reference calculations 

for the full set, or at the very least several specified reference compounds, using these files. 

This would allow differences in performance to be traced back to methodological differences 

rather than force field differences. Unfortunately, no participants actually reported results of 

reference calculations, so this type of analysis has thus far been impossible. However, the 

results of our reference calculations are still helpful for understanding the challenges facing 

SAMPL5 participants.

For our reference calculations, solvation free energies were calculated using GROMACS 

with GAFF parameters and AM1-BCC charges. Our reference calculations yielded partition 

coefficients, determined from the difference in solvation free energies without correcting for 

variation in tautomers. These calculations were done blindly, and analyzed as submission 

number 39, which was in the top quarter of submissions by most error metrics (Table 5) 

although, there is a slight bias favoring concentrations in cyclohexane, evidenced by the 

average error (1.6 ± 0.3).

After the challenge we explored how including protonation and deprotonation would have 

affected the initial partition coefficient predictions. The first set of corrections involved 

calculating the pKa for each molecule using Schrödinger’s Epik tool [41–43]. Next, log D 
was calculated using the pKa and partition coefficient determined in submission 39 using 

equations 3 and 4 for basic and acidic solutes, respectively. We assumed only one change in 

protonation state occurred so only one pKa was used. This does not account for zwitterions 

or alternate neutral tautomers. This correction (labeled ) showed a slight 

improvement by most error metrics (Table 5.3) including a decrease in the average error 

from 1.6 ± 0.3 to 0.7 ± 0.3 indicating less bias toward overly high concentration in 

cyclohexane.

For the next set of corrections, we used Schrödinger’s Ligprep tool [44] to enumerate 

tautomers and calculate a state penalty or relative energy of each tautomer in an aqueous 

buffer at pH 7.4. The state penalty was used to correct the concentration in the aqueous 

layer, according to equation 5. This correction (labeled log Dstate penalty) results show 

improvements from the original partition coefficient coefficients for tau (0.49 ± 0.08 to 0.65 

± 0.06) and R (0.6 ± 0.1 to 0.77 ± 0.06), but no significant change in RMSE or AUE. It 
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should be noted that no attempt was made to estimate uncertainties in the newly calculated 

 or log Dstate penalty although both of these corrections would certainty have 

introduced uncertainty into the estimate. Future exploration in tautomer estimation will need 

to account for the uncertainty in those calculations.

Both of these correction methods only adjust the concentration in the aqueous layer; 

however, there may be tautomer affects that would change the concentration in cyclohexane 

as well. Outliers and molecules with particularly significant changes in log D were indicated 

by number in figure 7. SAMPL_050 for example, had an initial log P value of 1.20 ± 0.04 

which was decreased significantly to −9.78 with the pKa correction and −10.70 with the 

state penalty correction compared to the experimental value −3.2 ± 0.6. SAMPL_060 and 

SAMPL_063 also changed by more than 3 log units due to these corrections. These state 

penalties allow us to account for other tautomers and protonation states only in the aqueous 

phase. Without tautomer enumeration in cyclohexane, we have to assume that the tautomer 

used for solvation free energy calculations, prior to correction, is the dominant state of the 

solute in the cyclohexane phase. If an alternate tautomer were relevant in water and 
cyclohexane, we could obtain dramatically incorrect values with this approach, since our 

state penalty will only recover alternate tautomer(s) in water, but not cyclohexane. This 

appears to be one of the reasons why these corrections seem to overshoot in the cases listed 

above. A better solution would compute state penalties in both water and cyclohexane, but 

we do not currently have an adequate approach for doing so.

Even after correcting for tautomer enumeration in the aqueous phase, there is a slight bias 

for cyclohexane in the calculated distribution coefficients (table 5.3 and Fig. 7). There are a 

variety of factors that could be contributing to this slight bias. A recent study by the Mobley 

group calculated partition coefficients for small molecules and found a slight bias for alcohol 

compounds to over favor cyclohexane[23]. Possibly, this demonstrates a limitation in GAFF 

or atomistic force fields in general to accurately predict the behavior of solutes in polar and 

non-polar environments. That same study found that for large, flexible compounds 

insufficient conformational sampling can dramatically affect the calculated partition 

coefficients [23]. Given the number of large, flexible, and polyfunctional compounds in 

SAMPL5, more investigation into each of these effects along with improved tautomer 

enumeration and handling (especially for the cyclohexane phase) will be required to 

completely understand the slight bias seen here.

5.4 Examining individual molecules

With only 53 molecules, it is difficult to find any statistically significant trends in terms of 

functional groups which are well- or poorly-predicted in general; compared to past SAMPL 

challenges, this set of molecules is much more complex. They are on average larger, more 

flexible, and contain multiple functional groups per compound. For each molecule, we 

organized a data set of predicted distribution coefficients and compared them to the 

experimental values, calculating the average unsigned error for each (Table 2). There are 

only three molecules with an AUE less than 2.0 log units (SAMPL5_ 003, 045, and 059). 

While these three molecules are relatively small, there were no trends in AUE and molecular 

weight, which was a trend present in SAMPL4 hydration free energy results [1]. We tried 
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grouping molecules by functional group, molecular mass, and estimated number of 

tautomers to see if size, presence or absence of particular functional groups, or number of 

tautomers played a role in how difficult each compound was in general. The only trend 

found in this process was that all five carboxylic acids (SAMPL5_ 010, 011, 015, 026, and 

060) are in the worst ten molecules by AUE and RMSE. This could be due to poor treatment 

of the effects of protonation state changes. Among the bottom compounds, perhaps 

unsurprisingly, was SAMPL5_083 which is a large macrocycle and SAMPL5_050; both 

have many neutral tautomeric forms. Most submissions had significant errors in predicting 

SAMPL5_074, despite the fact that it is relatively small, rigid, and has no other significant 

tautomers. Below we will explore why some of these molecules may have had distribution 

coefficients which were particularly difficult to predict.

The provided SMILES strings may not be the most populated tautomeric form 
of the molecule—From our tautomer enumeration and discussions with other SAMPL5 

participants [65] it became clear that accurately estimating log D for molecules with many 

tautomers was difficult. For example, we compared population corrections we derived using 

Schrödinger’s LigPrep [44] with corrections calculated by Pickard et. al. [66,52] and found 

significant differences between them. If we could perfectly calculate solvation free energies 

and tautomer populations in both solvents, the starting tautomer should not affect the final 

calculated distribution coefficient, but differing corrections – such as these – will yield 

different results. Additionally, whenever protonation state/tautomer populations are not 

estimated correctly or not included in both solvents, the initial choice of protonation state/

tautomer is likely to affect computed log D values. Here, our initial solvation free energy 

calculations used provided SMILES strings without any consideration of other tautomers. To 

explore how this may have affected our log D calculation, we decided to repeat a few 

solvation free energy calculations with alternate tautomers. We used SAMPL5_050 and 

SAMPL5_083 as examples since both have other neutral tautomers that could be present in 

both the water and cyclohexane solutions. Also, most participants failed to accurately predict 

the correct log D for either solute. The new tautomer for SAMPL5_050 was found with 

Ligprep [44]; the one for SAMPL5_083 was found with COSMO-RS and was provided by 

Andreas Klamt [65, 63]. For both SAMPL5_050 and SAMPL5_083 there were significant 

changes in their calculated solvation free energies and partition coefficients for the two 

different tautomers (Table 5.4). Distribution coefficients were calculated from the log P and 

state penalties calculated with Schrödinger’s LigPrep tool [44]. In both cases the log D is 

still significantly different from the experimental values. Since both the calculated solvation 

free energies and the tautomer/protomer populations are needed to estimate the distribution 

coefficient, it is impossible for us to know which calculation introduces more error into our 

estimates.

Solvents are not completely immiscible—Though the concentration of water in 

cyclohexane is very small, 0.00047 mole fraction [47], it may still affect how a solute is 

distributed across the two solvents. This will be particularly important for solutes with many 

polar groups; and may be one reason it was difficult to accurate estimate the log D for 

SAMPL5_074. We performed two new calculations of solvation free energy of 

SAMPL5_074 into cyclohexane with water also in the solution. These simulations were set-
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up with Solvation Toolkit as described above. Both sets of simulations had a single solute 

molecule in 150 cyclohexanes, but one had seven water molecules and the other had a single 

water molecule. While neither of these results reach the low experimental concentration of 

water in cyclohexane, they do demonstrate the dramatic variation in solvation free energy 

and log D which can be caused by the presence of water in cyclohexane. With varying 

amounts of water in cyclohexane, the water dramatically impacts the computed solvation 

free energy for SAMPL5_074 into cyclohexane (Table 5.4) and thus calculated log D values. 

In this case particular case, the presence of water also dramatically improves the estimation 

for log D, though as noted this is with far too high a water concentration in cyclohexane. We 

visualized trajectories from the production phase of our calculations and find that all water 

molecules stay adjacent to SAMPL5_074 for the full simulation, likely indicating a 

particularly high affinity for water. Addition of one or a few molecules of a second solvent 

(water) to cyclohexane might be expected to raise the uncertainty in calculated free energies 

significantly due to slow mixing of the second solvent in the simulation box, but we do not 

observe that here. It seems likely this is because the water molecules are so strongly 

attracted to the solute that they essentially stay bound throughout the simulations, so we do 

not observe slow mixing and the associated increased uncertainty. For a solute with so many 

polar functional groups, it is perhaps unsurprising that the water molecules in cyclohexane 

are drawn to the solute. In general, this suggests that the local concentration of water near 

highly polar solutes may be higher than the bulk concentration in cyclohexane, and this may 

potentially be important when considering simulation settings. It is important to note that the 

concentration of water in cyclohexane for these simulations are 0.0067 and 0.047 for 1 and 7 

water molecules, both a gross overestimate of the amount of water in cyclohexane (by 

multiple orders of magnitude) as our focus here was to explore the sensitivity of log D to 

cyclohexane water content. However, our results are sufficient to show that the presence of 

water in the cyclohexane phase can dramatically affect the computed distribution coefficient, 

depending on the affinity of the solute for water. To accurately account for these effects, we 

will need long simulations at much larger box sizes to not only match the experimental 

water concentration, but to determine how much water will localize around the solute at 

equilibrium. Given the extent to which water stays localized near the solute in these 

simulations, substantially longer simulations may also be needed to converge the relative 

populations of water in bulk cyclohexane versus near the solute.

Other buffer/solution components may affect distribution coefficients—The 

two phases for the distribution coefficients were cyclohexane and an aqueous buffer, 

however, DMSO and acetonitrile were used in the experiments [8] as well. While DMSO 

and acetonitrile were at very low concentrations, their presence in either solvent layer may 

affect how a solute distributes between phases. We created topology and coordinate files for 

a system with 780 water, 130 cyclohexane, 4 DMSO, and 2 acetonitrile molecules using 

SolvationToolkit, roughly matching the experimental concentrations. In the trajectory 

visualized with VMD, both DMSO and acetonitrile spend most of their time near the solvent 

interface, with very little movement into the bulk of the water or cyclohexane. In our view, 

this does not immediately suggest profound implications for calculated log D values, but a 

detailed understanding of the implications of this for both calculated and measured 

distribution coefficients will require further study.
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6 Conclusions

Past SAMPL challenges often involved a broad range of methods for hydration free 

energies. Here, in our first SAMPL on cyclohexane/water distribution coefficients, we saw a 

similarly diverse set of methods. Predicting log D accurately for this set of molecules was 

rather difficult, exhibiting a number of the same challenges that will face accurate prediction 

of binding affinities. The best methods showed reasonable agreement with experiment with 

RMSEs around 2.5 log units and Kendall tau’s around 0.6. However, considering that the 

null model and XlogPcorr both would have topped the submissions list by RMSE and AUE, 

there is clear room for all of the methods employed in SAMPL5 to improve.

This SAMPL5 set was substantially more complex, flexible, and polyfunctional than typical 

molecules in SAMPL hydration challenge sets. Additionally, the most relevant protonation 

state and tautomer were not always clear for the compounds. Some compounds likely had 

multiple relevant protonation states and tautomers, and shifts in protonation/tautomeric state 

on transferring between phases. These issues are especially important given that the 

challenge focused on distribution coefficients rather than partition coefficients (log P). Given 

these complexities, it is not surprising that we saw drop in performance relative to the 

accuracy that would have been expected for log D values if participants predicted log D 
based on solvation free energies in two solvents that could be computed as accurately as 

hydration free energies in previous SAMPL challenge (yielding an expected accuracy of 

about 1.5 log units). In large part, this is probably because of the additional complexities of 

distribution coefficients such as the need to account for other protonation states and 

tautomers. Our solvation free energy calculations performed with a less dominant tautomer 

of SAMPL5_050 lead to a log D estimate of −10.70 ± 0.04 which is 7.5 log units below the 

experimental value. Thus, accurately accounting for tautomers appears to be a vital part of 

accurately calculating log D, and better methods for treating protonation and especially 

tautomeric states in non-aqueous environments are needed.

As mentioned earlier, the molecules chosen for SAMPL5 are generally larger and more 

flexible than those in past SAMPL challenges. It follows that conformational sampling of 

the solutes might play a significant role in accurately predicting these distribution 

coefficients. In a previous study using the same protocol as the reference calculation here, 

the Mobley lab showed that changing the initial conformation of a large, flexible molecule 

dramatically changed its calculated partition coefficient due to insufficient conformational 

sampling [23]. In this issue, Tyler Luchko et. al spend time addressing the importance of 

conformational sampling for these molecules in the context of their submission results for 

the challenge [59].

We asked participants to estimate two forms of uncertainty, statistical uncertainty and model 

uncertainty, the latter of which should predict how well their calculation will agree with 

experiment. This latter uncertainty estimate is particularly key, as it would allow 

practitioners to predict how reliable their calculations are likely to be in applications. Here, 

we find that almost every participant dramatically underestimated their model uncertainty. 

The importance for the community to improve error estimation has been addressed in past 

SAMPL challenges [1], but clearly, much more work is still needed.
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A common trend in SAMPL5 submissions was that the dynamic range in the predicted 

distribution coefficients was larger than the dynamic range observed experimentally – that is, 

generally, the smallest log D values were underestimated and the largest were overestimated. 

This issue of dynamic range is visible in figures 2, 5, and 7, but was evident in comparison 

plots for almost all submissions. For SAMPL5_074, the introduction of water to 

cyclohexane increased the log D estimate from −3.76 to −1.73; it is possible that accounting 

for water in cyclohexane would affect the apparent underestimation at the lower end of the 

log D scale. As discussed above, it is also possible that insufficient conformational sampling 

could account for some of this problem. For example, if a solute has a particular 

conformation that is more stable in a non-polar environment and that conformation was not 

found for the solute in cyclohexane due to insufficient conformational sampling, then the 

calculated distribution coefficient would over favor the aqueous environment. However, this 

will require further investigation. It is of course also possible that experimental issues could 

have compressed the measured dynamic range of compounds, but this too will require 

further investigation.

The results of this challenge strongly suggest predictions for solute partitioning will be 

extremely helpful for driving improvements to physical modeling needed in pharmaceutical 

research. The major challenges encountered here are all very likely to occur when 

attempting to predict binding affinities or other biomolecular properties of interest to drug 

discovery. Specifically, accurately predicting the population of protonation and tautomeric 

states was a challenge, complicated by the fact that there is no simple way to predicted 

protonation states and tautomers to corresponding experimental values relevant to the 

conditions studied here. Most work so far on tautomer prediction has focused on tautomeric 

ratios in vacuum or in water, but tautomer populations are likely environment-dependent in 

ways that can dramatically affect computed physical properties. These same challenges are 

likely to apply when predicting biomolecular binding. An improved treatment of these 

effects within the context of SAMPL or similar challenges will drive advances in 

computational techniques also used to predict binding and related properties such as 

solubility.

Overall, distribution coefficients have been an extremely valuable part of this year’s 

SAMPL5 challenge, and, since they can be measured in a relatively straightforward way, 

seem to be a promising potential source of future data for blind challenges. Additionally, this 

data highlights important issues, such as tautomer enumeration, that need better treatment in 

many of our models. The ability to create new, completely blind data sets make distribution 

coefficients a great option for future challenges.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Calculated solvation free energy for SAMPL5_024 is independent of box size for PME and 

reaction field coulomb interactions. Points are connected to help distinguish between the two 

data sets
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Fig. 2. 
Example plots created for each set of predictions. Submission 21 [53] and submission 49 

[62] were chosen to try to represent average submissions, those that were in the middle by 

most error metrics. Comparison plots show how predicted distribution coefficients compared 

to experiment for both submissions. QQ Plots show how errors in the predictions were 

distributed compared to expectations given the model uncertainty.
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Fig. 3. 
Root-mean-squared error (RMSE), average error (AveErr), and average unsigned error 

(AUE) for every SAMPL5 submission covering all batches. The submissions on each plot 

are sorted from best to worst by that metric. Due to the number of submissions, data was 

split across the two panels, with a change in the y-axis scale.
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Fig. 4. 
Kendall’s tau, Pearson’s R, and the slope from a linear regression analysis on the QQ Plot 

(‘error slope’) for every SAMPL5 submission covering all batches. The submissions on each 

plot are sorted from best to worst by that metric. Due to the number of submissions, data 

was split across the two panels, with a change in the y-axis scale.
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Fig. 5. 
These plots compare predicted and experimental distribution coefficients for the top 

performing submissions (16, 36, and 14).
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Fig. 6. 
The experimental distribution coefficients of the SAMPL5 challenge have a relatively small 

dynamic range, with most falling within 2 log units of zero.
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Fig. 7. 
Plots showing our reference calculations compared to experiment. Shown here is the results 

for submission 39 in SAMPL5, with no tautomer correction (log P), distribution coefficient 

corrected from calculated partition coefficient based on pKas ( ), and distribution 

coefficient corrected from calculated partition coefficient based on state penalties (log 

Dstate penalty).
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Table 1

A complete list of compounds used in the SAMPL5 challenge, sorted by batch. The average unsigned error 

(AUE), reported in log units as SAMPL5 ID: AUE, was calculated with all submitted predictions for that 

compound. The 2D images were generated using OpenEye OEDepict toolkit [22] using the provided SMILES 

strings
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Table 3

Null hypothesis corresponds to log D = 0 for all molecules. XlogPoct is a calculation octanol/water partition 

coefficient for each molecule and XlogPcorr includes a linear regression correction.

Metric Null XlogPoct XlogPcorr

AveErr 0.5 ± 0.2 2.8 ± 0.2 1.1 ± 0.2

RMSE 1.8 ± 0.1 3.1 ± 0.1 1.6 ± 0.1

AUE 1.6 ± 0.1 2.8 ± 0.2 1.3 ± 0.1

tau N/A 0.62 ± 0.04 0.62 ± 0.04

R N/A 0.78 ± 0.04 0.78 ± 0.04
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Table 4

Shown are the results for error analysis on our reference calculations which estimated log D as a cyclohexane 

partition coefficient (log P) and the correction to distributions coefficients by pKa ( ) and by state 

penalty (log Dstate penalty). Included here are average error (AveErr), root-mean-squared error (RMSE), average 

unsigned error (AUE), Kendall’s tau, and Pearson’s R.

Metric log P log Dstate penalty

AveErr 1.6 ± 0.3 0.7 ± 0.3 0.5 ± 0.4

RMSE 2.6 ± 0.2 2.4 ± 0.2 2.6 ± 0.3

AUE 2.1 ± 0.2 2.0 ± 0.2 2.1 ± 0.2

tau 0.49 ± 0.08 0.65 ± 0.07 0.65 ± 0.06

R 0.6 ± 0.1 0.78 ± 0.07 0.77 ± 0.06
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Table 5

Shown are the results for solvation free energy of two different tautomers of SAMPL5_ 050 and 083. 

Corrections from log P to log D account for tautomer populations in the aqueous phase. Energies are reported 

in kcal/mol.

SAMPL5_050 SAMPL5_083

tautomer 1 tautomer 2 tautomer 1 tautomer 2

∆Ghydration −11.45 ± 0.04 −21.50 ± 0.03 −33.98 ± 0.07 −32.68 ± 0.1

∆Gcyclohexane −13.09 ± 0.04 −13.25 ± 0.04 −35.6 ± 0.1 −36.1 ± 0.2

log Pcyc/wat 1.20 ± 0.04 −6.04 ± 0.03 1.21 ± 0.09 2.5 ± 0.2

state penalty correction       −11.902       −0.453       −0.488       −6.53

log Dcyc/wat −10.70 ± 0.04 −6.50 ± 0.03 0.72 ± 0.09 −4.0 ± 0.2

experimental log D −3.2 ± 0.6 −1.9 ± 0.4
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Table 6

Shown are results for the solvation free energy and distribution coefficient for SAMPL5_074 in cyclohexane 

with no water present, 1 water molecule, and 7 water molecules all with 150 cyclohexane molecules and 1 

solute molecule. No changes were made for the aqueous phase so the ∆Ghydration is the same for all three 

calculations. Energy is reported in kcal/mol.

Number Molecules 0 water 1 water 7 water

ΔGhydration −21.90 ± 0.04

ΔGcyclohexane
log Dcyc/wat

−16.77 ± 0.04
−3.76 ± 0.04

−18.05 ± 0.04
−2.82 ± 0.04

−19.54 ± 0.04
−1.73 ± 0.04

experimental log D −1.9 ± 0.3
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