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Abstract

We assess the performance of several machine learning-based scoring methods at protein-ligand 

pose prediction, virtual screening, and binding affinity prediction. The methods and the manner in 

which they were trained make them sufficiently diverse to evaluate the utility of various strategies 

for training set curation and binding pose generation, but they share a novel approach to 

classification in the context of protein-ligand scoring. Rather than explicitly using structural data 

such as affinity values or information extracted from crystal binding poses for training, we instead 

exploit the abundance of data available from high-throughput screening to approach the problem 

as one of discriminating binders from non-binders. We evaluate the performance of our various 

scoring methods in the 2015 D3R Grand Challenge and find that although the merits of some 

features of our approach remain inconclusive, our scoring methods performed comparably to a 

state-of-the-art scoring function that was fit to binding affinity data.
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1 Introduction

A scoring function that accurately represents and predicts ligand-protein interactions is 

essential for molecular docking, energy minimization, and hit identification/lead 

optimization in structure-based drug discovery [1–10]. The development of an accurate and 

reliable scoring function remains an unsolved problem [10–15]. Ideally, given a protein-

ligand structure, a scoring function would be able to correctly place the true, crystal pose of 

a ligand at a global minimum (pose prediction) and, if provided poses at this global 

minimum, correctly distinguish between active and inactive ligands (virtual screening 

performance) by producing scores equivalent to the binding free energy (binding affinity 

prediction).

Scoring function design philosophies generally span a continuum between force-field based 

scoring, empirical scoring, and knowledge-based scoring. Force-field based scoring [7, 16–

23] attempts to compute the physical interaction of the protein and small molecule and 

includes terms such as van der Waals and electrostatic interactions. These terms are typically 
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parameterized from first principles. Empirical scoring functions [24, 25, 25–30] include 

physically meaningful terms that may not directly map to physical forces, such as 

hydrophobic terms, and are parameterized to reproduce binding affinities or other data. 

Knowledge-based scoring [31–37] takes advantage of the growing amount of structural data 

to derive statistical potentials for ligand-protein interaction patterns.

Parametric machine learning methods, such as linear regression, are often used to 

parameterize empirical scoring functions. In contrast, non-parametric machine learning 

methods, such as neural networks [38, 39], provide greater flexibility and expressiveness as 

they learn both their model structure and parameters from data. Such methods have 

successfully been applied to scoring protein-ligand interactions [36, 40, 41, 41–49]. These 

scoring functions take as input a set of descriptors extracted from a protein-ligand complex. 

These descriptors are either terms common to empirical scoring [47], such as measures of 

electrostatic attraction, atom interaction counts [48], or more abstract interaction fingerprints 

[44]. A disadvantage of non-parametric methods is that their increased expressiveness 

increases the probability of overfitting the model to the data, in which case the scoring 

function will not generalize to protein targets or ligand chemotypes not in the training data. 

The risk of overfitting increases the importance of rigorous validation [50, 51], but the 

inherent increase in flexibility allows non-parametric methods to outperform more 

constrained methods when trained on the identical input set [52].

As our entry in the Drug Design Data Resource (D3R) blind challenge, we investigated a 

variety of machine learning techniques. We evaluated both structure-based classification 

models and ligand-based regression models. For our structure-based classification we 

explored using the DUD-E dataset [53] for training. In contrast to the CSAR dataset [9] we 

have previously used [24], DUD-E is much larger (more than 1 million ligands), but lacks 

crystal structures for its more than 22,000 active ligands. Our goal in entering the D3R 

evaluation was to prospectively assess the performance of using structure-based training 

with generated DUD-E poses with both parametric and non-parametric machine learning 

methods while also evaluating a purely ligand-based QSAR method.

2 Methods

Our overall approach is shown in Figure 1. We considered both a ligand-based Quantitative 

Structure Activity Relationship (QSAR) approach and a structure-based docking and scoring 

approach. For the ligand-based approach we train a regression model from binding affinity 

data using RDKit [54] and a variety of chemical fingerprints. For the structure-based 

approach we make extensive use of smina [24], a fork of AutoDock Vina with enhanced 

capabilities for custom scoring function development, and the AutoDock Vina [30] scoring 

function. We evaluated a unique approach where we train classification models on binary 

binding data and used these classification models to rank and select docked poses.

The 2015 D3R Grand Challenge consisted of both affinity prediction and pose prediction 

exercises for two blinded collections of compounds for two targets: Heat Shock Protein 90 

(HSP90) and mitogen-activated protein kinase kinase kinase kinase (MAP4K4). 180 ligands 

were provided for HSP90 with IC50 activities ranging from 5nM to inactive and six crystal 
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structures were left blinded as part of the competition. The MAP4K4 dataset consisted of 30 

compounds, all with co-crystal structures, but only 18 of which had measured IC50 data. 

Consequently, the HSP90 target is most useful for assessing binding affinity prediction and 

virtual screening performance while the MAP4K4 target is most suited for pose prediction 

evaluation.

2.1 Ligand-Based Regression

The goal of 2D QSAR modeling [55] is to generate a predictive model of a desired property, 

in our case binding activity, from a training set of molecules with known activity using 

descriptors generated from the 2D topology of the compounds. Using three different 2D 

fingerprint descriptors, we created three different models for HSP90 binding from the same 

training set. The code used to build our models is available under a permissive open source 

license at https://github.com/dkoes/qsar-tools and complete details of our approach are 

provided in the Supplementary Information.

2.1.1 Training Set—Compounds with published activity were extracted from the 

ChEMBL bioactivity database [56]. Specifically, we collected active compounds from the 

CHEMBL3880 target (HSP90 alpha) that had IC50 values with an equality relation 

expressed in nM units and a pChEMBL greater than zero (this is a negative logarithm used 

to standardize across different activity measurements). The resulting 355 active compounds 

spanned a pChEMBL range from 4 (100µM) to 9 (1nM). These compounds were then 

stripped of any salts and a variety of descriptors were calculated.

2.1.2 Descriptors—We calculated Boolean fingerprint descriptors, which encode a 

molecule as a binary string where each bit position corresponds to the presence or absence 

of a specific pattern of atoms in the molecule. We evaluated three different fingerprints: 

default RDKit (2048 bits), unfolded path (variable bits), and circular ECFP6 (2048 bits).

Default RDKit: The default RDKit fingerprint enumerates all paths (including branched 

paths) of a molecule with up to 7 bonds. These paths, including their atom and bond type 

information, are then doubly hashed to a bit position within a 2048 bit vector. The use of a 

constant fingerprint size means the fingerprint is general and can be broadly applied for 

similarity calculations, but introduces the likelihood of collisions where the same bit 

position corresponds to multiple distinct atom patterns.

Unfolded Path: For our unfolded path fingerprints, we enumerated all possible unbranched 

paths, including atom and bond type information, present in the molecules of the training set 

resulting in 6628 distinct atom patterns. Each path was then assigned a unique bit in a bit 

vector. In this case, every bit in the fingerprint unambiguously corresponds to a specific 

atom pattern. If new atom patterns are encountered when fingerprinting molecules not in the 

training set they are ignored.

Circular ECFP6: Extended connectivity fingerprints [57] enumerate atom patterns that 

represent the neighborhood of each atom up to a circular diameter, in our case 6, of bond 

lengths. These descriptors are then folded into a 2048 bit fingerprint with RDKit.
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2.1.3 Elastic Net Linear Model—We create predictive linear models from the training 

set and descriptors using the ElasticNet module of the popular scikit-learn [58] Python 

package. An elastic net model includes both an L1 and L2 regularization factor:

where X are the input binary features, y are the labels (affinity values), w are the weights of 

the model, and α and ρ are parameters controlling the degree of regularization. Increased 

regularization drives weight values to zero, reducing the number of selected features. This 

reduces the amount of overfitting in the model at the cost of reduced expressiveness. In order 

to set these regularization parameters we apply an internal cross-validation to identify the 

best parameters for the training set. Using this approach we achieved internal cross-

validation R2 correlations of 0.52, 0.50, and 0.60 using the default RDKit fingerprints, 

unfolded path, and circular ECFP6 fingerprints respectively.

2.2 Structure-Based Classification

For our structure-based workflow, which unlike the ligand-based regression also produces 

pose predictions, we use docked poses to train models to distinguish between binders and 

non-binders. These models are then used to re-rank and select docked poses of the D3R 

ligands.

2.2.1 Training Set—The workflow for training set construction is shown in Figure 2. 

Somewhat unconventionally, we chose to train structure-based models using a dataset, the 

Enhanced Directory of Useful Decoys (DUD-E) [53], that lacks protein-ligand structures. 

The advantage of DUD-E is its large size: it consists of 102 targets, more than 20,000 active 

molecules, and more than a million decoy molecules. The disadvantage is that compounds 

are classified as active/decoy (no binding affinity information) and structures are not 

available. To address this, we train our models as binary classifiers on docked poses. The 

docked poses are generated using smina [24] using the AutoDock Vina scoring function. 

Input ligands are converted to a single 3D conformer using RDKit which is then docked as a 

flexible ligand (hence the need to only generate a single conformer as rotatable bonds are 

sampled during docking). We dock against the reference receptor provided with DUD-E in a 

box centered around the reference ligand with 8Å of padding and select the top ranked pose 

as the structure to use for that ligand. This results in a highly imbalanced and noisy training 

set that is dominated by decoys. To enhance the signal exhibited by the active set, we also 

create a balanced set with equal numbers of decoy and active compounds. Since DUD-E 

includes an HSP90 target, we also extract a target specific set from these two larger training 

sets.

2.2.2 Descriptors—We distill every protein-ligand pose in our training set into a 

numerical vector of interaction features computed using smina and custom code to produce 

the descriptors shown in Figure 3. The custom code is primarily used to calculate descriptors 

that include a solvent accessible surface area (SASA) term, since smina only computes 

pairwise interaction terms. An assortment of parameterized smina terms are used and 
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include steric, hydrophobic, van der Waals, hydrogen bonding, solvation, electrostatic 

(partial charges computed using Open Babel [59]), and non-interaction count/summation 

terms. Finally, we also include the AutoDock Vina score for a total of 61 features.

For purposes of internal validation, we first evaluated our models using clustered cross-

validation [50] where we partitioned the DUD-E training set at a target granularity into 

multiple folds. This provides a greater measure of generalizability since trained models are 

tested on entirely new targets. For training, as we are performing classification, we evaluated 

the ability of a model to properly rank compounds using the area under the curve (AUC) of 

the receiver operating characteristic (ROC) curve. A perfect ranking of ligands produces an 

AUC of 1.0 and a random ranking results in an AUC of 0.5. Models used for our D3R 

predictions were trained on the entire training set.

2.2.3 Linear Regression Model—Using scikit-learn [58] with default parameters we 

evaluated both linear regression and logistic regression, which is more commonly used in 

classification tasks, and found they produced nearly identical results in our cross-validation 

analysis. They both achieved an average AUC of 0.77 in 10-fold cross-validation when 

trained on the balanced training set. Since linear models are faster to evaluate and train, have 

more interpretable coefficients, and produce a wider range of prediction values (unlike 

logistic regression which is capped between zero and one), we selected a linear regression 

model for our D3R submission.

2.2.4 Neural Network Model—As an additional model, we trained a neural net with a 

single hidden layer of 20 nodes and two output classes (active or decoy) using the Caffe 

deep learning framework [60]. The model used sigmoid activation in the hidden layer and a 

softmax function to normalize the output. It was trained by stochastic gradient descent with 

an inverse learning rate decay function (ηi = 0.01, γ = 0.0004, power = 2) and momentum 

(α = 0.9) to minimize the multinomial logistic loss. Training occured for 10,000 iterations 

with a batch size of 20,000 examples. When trained on the unbalanced dataset, class weights 

were applied when computing the loss to balance the influence of the negative examples 

with the underrepresented positive examples. The 10-fold cross-validated AUC for the 

model was 0.74 using the balanced dataset and 0.73 on the unbalanced dataset.

2.3 Test Set

The provided SMILES of the D3R ligands were converted into a single conformer with 

RDKit and then docked with smina [24]. The binding site was defined using the cognate 

ligand of the receptor. Unlike with the training set, we increased the amount of sampling 

performed during docking (--exhaustiveness 50) to increase the chance of identifying 

high-quality poses. For the HSP90 target we limited ourselves to the four receptors 

referenced by the D3R organizers: 2JJC, 2XDX, 4YKR, 4YKY. Since the presence of waters 

was explicitly called out by the organizers, we docked to variations of these structures with 

zero, one, or two waters within the binding site. For each receptor structure, we generated up 

to 9 distinct poses for a total of 21,893 poses.

For MAP4K4, we also limited ourselves to the two structures referenced by the organizers: 

4OBO and 4U44. In this case, since the organizers explicitly called out the flexibility of the 
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structure we ran a 100ns molecular dynamics simulation using Amber14 and and the 

amberff14sb force field with TIP3P water under neutral conditions. In order to prepare the 

structures for simulation, we modeled missing loops as needed with the FREAD loop 

modeling server [61] and PyMOL. A greedy top-down clustering algorithm was then used to 

select ten diverse, as measured by backbone RMSD, frames from the 100ns simulation. The 

distributions of sampled backbone RMSDs are shown in Figure S1. Compounds were 

docked to these ten structures and the original crystal and up to 9 distinct poses were 

generated for each receptor for a total of 5,329 poses.

Our linear regression and neural network models were applied to all generated poses and the 

best scoring poses for each ligand were submitted as our predicted poses and the score of the 

best scoring pose was used for our submitted affinity predictions.

3 Results

The MAP4K4 and HSP90 datasets each served as a specialized evaluation task based on the 

nature of the data available: MAP4K4 had 30 blinded crystal structures that served to test 

pose prediction performance, while HSP90 had blinded affinity data for 180 ligands that 

could be used to evaluate virtual screening methodologies. Both sets had a relative paucity 

of data available for the other task - affinity data for 18 ligands in the case of MAP4K4 and 

crystal poses for 6 ligands in the case of HSP90 - and we thus focus much of the analysis of 

our performance on each task on the dataset suited to that task.

There are several axes of analysis, each elucidating the utility of a particular method we used 

to train and select classification models as well as generate instances to test them. Broadly, 

there are differences in the type of classification model (linear regression, linear regression 

including an L1 regularization term, and a neural net), the dataset used to train the classifier 

(the balanced and reduced datasets, and the targeted datasets in the case of HSP90), and the 

methods used to generate an ensemble of receptor structures used to created poses for the 

test sets. Although we did not submit the predictions from our linear classifier with an L1 

lasso to the challenge, we include the data from its predictions here for the purposes of 

evaluation.

3.1 Pose Prediction

Given the 30 MAP4K4 crystal poses released at the close of Stage 1 of the challenge, we 

computed RMSDs of our predicted poses to the provided 4OBO aligned crystal poses. This 

information was then used to assess the performance of our training and testing 

methodologies across all the axes described above. In general we wanted to know whether it 

was more likely to observe low RMSD poses using a particular methodology, either in the 

top ranked pose for a given ligand or considering a subset of the top-ranked poses.

Since a scoring function’s ability to rank low-RMSD poses is limited by our ability to 

sample low-RMSD poses, we first focus on our pose sampling in the test set. Figure 4 shows 

that half of the ligands have at least one pose under 2.0 RMSD with the 4OBO crystal 

structure, which outperforms all other receptor structures in generating low RMSD poses. 

One of the 4U44 ensemble receptors outperforms the 4U44 crystal structure at generating 
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low RMSD poses, successfully yielding a pose under 2.0 RMSD 37% of the time, compared 

to 23% of the time with the crystal structure. However, that structure is the first frame from 

the molecular dynamics simulation, suggesting that the pre-simulation minimization of the 

crystal structure may have been sufficient to produce better poses with 4U44. Of the 23 

ligands for which we successfully sampled a pose under 2.0 RMSD, docking to one of the 

crystal structures was sufficient to produce such a pose for all but one. However, considering 

the lowest RMSD pose available in the test set for each of the ligands reveals that 14 ligands 

exhibited their lowest RMSD pose when docked to a simulation derived receptor rather than 

a crystal receptor structure, suggesting there was some value in performing the ensemble 

docking.

Figure 5 shows the mean across all ligands of the RMSD of the best pose seen so far at a 

given rank for each of the methods used to score and then rank poses. It indicates that for the 

majority of the values shown, the scoring functions trained on the reduced datasets 

outperformed those that were trained on the balanced datasets. The linear regression scoring 

function trained with lasso was the method that performed best overall, returning a pose 

within 4.0 RMSD on average by the fourth ranked pose; however, all methods except Vina 

(included as a baseline) and the lasso method trained on the balanced dataset returned a pose 

within 4.0 RMSD on average within the top five ranked poses. On average, no methods 

returned a pose within 2.0 RMSD in the top 25 ranked poses, despite the fact that 23 ligands 

had such a pose in the set of poses we generated via docking for the test set.

Figure 6 demonstrates that if only poses generated from the 4OBO crystal structure had been 

scored, a greater number of poses within 4.0 RMSD would have appeared as the top ranked 

pose chosen by all of the scoring methods except Vina. The assessment of the poses 

generated by 4U44 is more equivocal; while the lasso- and neural net-based methods 

demonstrate improved sampling of low RMSD poses if they are restricted to poses generated 

using 4U44, only for the lasso method trained using the balanced dataset does the lower 

quartile improve by nearly 2.0 RMSD, with a weaker effect observed for the other methods. 

The medians of the linear scoring function rankings improve by around 2.0 RMSD by using 

the full set of poses generated via the complete receptor ensemble rather than the 4U44 

crystal structure.

Figure 7 views the rank1 poses produced by each method based on the ligand with which 

they were associated. One of our methods (not including Vina) gave top rank to a pose 

within 4.0 RMSD for 13 of the ligands and within 2.0 RMSD for 6 of the ligands. Linear 

regression or linear regression with lasso, both trained using the reduced dataset, were the 

methods most successful at selecting low RMSD poses. Of the 17 ligands for which we 

failed to place a pose under 2.0 RMSD at rank 1, seven had no such pose in the dataset. The 

remaining ten had at least one pose under 2 RMSD in the dataset, but none of our methods 

correctly identified any such pose at rank 1. The ligand the methods had the most trouble 

with, despite the presence of a low (< 1Å) RMSD pose, was MAP07, which is shown in 

Figure 8. MAP07 has a cyclopropane group that is solvent exposed in the crystal, but all our 

methods (and Vina) prefer poses where this group is more buried.
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A similar analysis was performed for the 6 ligands in the HSP90 dataset for which crystal 

structures were made available at the end of the challenge. The linear regression model 

trained on the balanced dataset was the best performing method on that task, with an average 

rank 1 pose RMSD of 1.9. However, Vina was more successful at predicting the lowest 

RMSD poses found in the top 5 ranking, reaching 0.98 RMSD by rank 5. The other methods 

performed significantly worse than Vina at every rank, and there was no clear consensus 

regarding whether training with the balanced or the reduced datasets proved advantageous 

for this task. The targeted training set produced scoring functions that performed the worst 

overall, generating poses that were on average 1–2.5 RMSD worse than those generated by 

the non-targeted version of the scoring function. In terms of sampling, two of the receptors 

produced poses within 2.0 RMSD for five of the six ligands, ten receptors produced poses 

within 4.0 RMSD for all of the ligands, and all receptors produced poses within 4.0 RMSD 

for four of the six ligands. Of the seven receptors that produced poses within 2.0 RMSD for 

at least four ligands, five used crystal waters in docking and two did not; of the two receptors 

that produced poses within 2.0 RMSD for at least five ligands, one used crystal waters and 

the other did not. This suggests that including crystal waters may enhance sampling of low 

RMSD poses and, at a minimum, is not detrimental. However, the small size of the HSP90 

test set prevents any definitive conclusion.

3.2 Virtual Screening Performance

As the HSP90 set of 180 ligands included inactive compounds, it provides a means to 

evaluate virtual screening performance, that is, how well the various scoring methods 

discriminate between binders and non-binders. The cutoff for activity was set at 50µM 

resulting in 136 active and 44 inactive compounds. The score of the top ranked pose selected 

by each scoring method was used to rank each ligand. The area under the curve (AUC) of 

the receiver operating characteristic (ROC) curve for the various methods is shown in Figure 

9 with 95% confidence intervals, and the ROC curves for selected methods are shown in 

Figure 10. The best AUC of 0.65 was achieved by Vina, but the structure-based methods 

trained using the balanced set and the ECFP6 ligand-based method all performed similarly 

with AUCs of 0.63 or better.

Methods trained using the reduced set, in which decoy examples are not down-sampled to 

balance the effect of active and inactive compounds on training, fared more poorly. Methods 

trained on the HSP90 target-specific balanced set were worse than random. Of the ligand-

based methods, only ECFP6 fingerprints produced an AUC that was meaningfully above 

random.

Although Vina, ECFP6, and the balanced methods perform similarly, they still score ligands 

differently, as shown in Figure 11 which plots the ligand scores of the different methods with 

respect to each other. The structure-based methods are more correlated with one another 

than with the ligand-based method.

3.3 Affinity Prediction

Both the HSP90 and MAP4K4 sets provide an opportunity to assess the ability of the 

methods to accurately predict the reported activity. Overall correlations between predicted 
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and experimental activity for the HSP90 ligands are shown in Figure 12. As with the virtual 

screening results, Vina and the structure-based methods trained on the balanced set perform 

similarly and the methods trained on the HSP90 target-specific training set perform poorly. 

Methods trained on the reduced set have similar performance to Vina, with the neural net 

model achieving the highest Spearman correlation coefficient of 0.40. However, this is not a 

particularly high correlation and is not substantially more than the dataset’s correlation with 

molecular weight (0.34). Both the ECFP6 and RDKit 2D QSAR regression models achieve 

statistically significant correlations, but do not outperform the structure-based methods.

The MAP4K4 dataset has substantially fewer compounds with reported activities (17 

ligands) which, as indicated by the 95% confidence intervals in Figure 13, makes it difficult 

to meaningfully compare methods. However, since the MAP4K4 dataset has the advantage 

of providing crystal structures for all 17 ligands, we also evaluated affinity prediction 

performance when scoring the pose with the closest RMSD to the crystal ligand instead of 

the pose top-ranked by the scoring function. Interestingly, as shown in Figure 13, scoring 

this superior pose did not result in improved correlations, statistically significant or 

otherwise.

4 Discussion

The 2015 D3R Grand Challenge provided an excellent opportunity to prospectively evaluate 

pose prediction and scoring methods. We evaluated both structure-based and ligand-based 

machine learning approaches. Somewhat surprisingly [62], the 3D structure-based methods 

outperformed the 2D methods for the one target, HSP90, where there was sufficient data to 

construct QSAR models. Although it is possible that the use of more expressive features [63] 

or models [64] would improve the results, a more likely issue lies in the coverage of the 

training set with respect to the D3R ligands. Figure 14 show the HSP90 datasets plotted with 

respect to the first to principal components of the D3R ligands as computed using 

OpenBabel FP2 fingerprints. The three congeneric series of the D3R set are clearly 

distinguished as three separate clusters. The ChEMBL dataset used with the ligand-based 

methods fully covers one cluster but only partially covers the remaining two. In contrast, the 

DUD-E HSP90 set used for the target-specific structure-based scoring functions has little 

overlap with the D3R ligands. This property, combined with the set’s small size (88 active 

ligands), was likely a major factor in the poor performance of these methods.

We used the D3R exercise to evaluate a variety of machine learning based scoring methods 

that were trained using a novel classification approach. Rather than fitting to affinity data or 

pose RMSDs, this approach seeks to leverage the large amount of high-throughput screening 

data available from a wide variety of sources. Framing the problem as a classification 

between binders and non-binders automatically normalizes for different assay outcomes. In 

order to utilize binding data in a structure-based approach, protein-ligand structures must be 

produced through docking. The end result is a large (the DUD-E set used here has more than 

one million ligands), but extremely noisy (due to docking inaccuracies) dataset. A key goal 

of this exercise was to evaluate the feasibility of such a training approach as well as compare 

different approaches to training set construction (i.e., balanced vs reduced).
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Although the machine learning approaches did not outperform the AutoDock Vina scoring 

function, they did perform comparably at pose prediction, virtual screening, and affinity 

prediction. This may not seem surprising as the terms of the AutoDock Vina scoring 

function were included as training features. In fact, one of the features was the AutoDock 

Vina score itself, but omission of the Vina score from the training data produces essentially 

identical results (score predictions correlate with R>0.99). Nonetheless, we find it 

encouraging that two distinct modeling methods, linear regression and neural networks, can 

exploit a large, noisy dataset such as docked DUD-E poses, to achieve comparable results to 

a state-of-the art scoring function. The comparison between training set construction 

approaches was inconclusive with the reduced set producing somewhat better results for 

MAP4K4 pose prediction and the balanced set outperforming on HSP90 screening and 

affinity prediction. Larger, more accurate training data combined with more expressive 

structural input features or alternative machine learning approaches should further improve 

the usability and accuracy of scoring functions learned through classification of docked 

poses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The overall approach for our D3R submission. D3R ligands were ranked using a 2D QSAR 

approach trained using ChEMBL data (left side) or through a structure-based docking and 

scoring approach that used the DUD-E data set to train custom scoring functions for re-

ranking poses docked using smina and the AutoDock Vina scoring function (right side).

Sunseri et al. Page 15

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Our workflow for generating structural training sets from the DUD-E dataset.
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Fig. 3. 
Structure-based descriptors used to train machine learning models. Italicized features are 

computed outside of smina and include solvent accessible surface area (SASA) atom type 

specific solvation terms (es_1 –es_6) and buried-ness terms (bfO, bfN).
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Fig. 4. 
Fraction of ligands with poses under a given RMSD, colored by the receptor structure 

associated with the subset of poses used for the calculation. The starting PDB crystal 

structures are shown with dashed lines in the darkest colors, while the structures generated 

from molecular dynamics simulations are colored according to a gradient based on their 

frame number, representing their distance from the initial crystal structure used to start the 

simulation.
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Fig. 5. 
The average of the best RMSD observed for each ligand up to a given rank, compared across 

all the methods with Vina’s performance used as a baseline.
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Fig. 6. 
Assessment of the mean rank 1 pose RMSD across all 30 ligands, comparing the different 

classifiers and the methods used to train them, as well as the receptor structures used to 

generate poses. Boxes show quartiles, lines bisecting the boxes indicate the location of the 

median, while stars indicate the location of the mean.
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Fig. 7. 
RMSD of the rank 1 pose each method selected for each ligand in the MAP4K4 test set. The 

dashed gray line shows the lowest RMSD that could have been obtained by selecting poses 

from the test set.
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Fig. 8. 
An example of a challenging ligand for pose selection. The crystal pose for MAP07 is 

shown as thin yellow sticks while a pose top-ranked by a linear method for this receptor is 

shown in magenta sticks. The surface of the top of the binding pocket is removed for clarity.
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Fig. 9. 
Area under the curve (AUC) of the ROC curves generated using various methods to rank 

HSP90 ligand poses. Error bars indicate the 95% confidence interval as determined by 

bootstrapping with replacement (1000 iterations). Compounds with a reported activity 

greater or equal to 50µM were considered inactive.
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Fig. 10. 
The ROC curves for HSP90 ligands generated using structure-based methods trained on a 

balanced training set (left) and curves of ligand-based methods (right). Compounds with a 

reported activity greater or equal to 50µM were considered inactive.
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Fig. 11. 
Spearman correlations of HSP90 ligand scores for selected methods. The logit function (an 

inverse sigmoid) was applied to the neural network score for visualization purposes.
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Fig. 12. 
Spearman correlation coefficients using various methods to rank HSP90 ligands. Only 

ligands with reported IC50s below 50µM were considered. Error bars indicate the 95% 

confidence interval as determined by bootstrapping with replacement (1000 iterations).
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Fig. 13. 
Spearman correlation coefficients using various methods to rank MAP4K4 ligands using the 

ligand pose top ranked by the given method (left) or the ligand pose with the smallest 

RMSD to the crystal structure (right). Error bars indicate the 95% confidence interval as 

determined by boot-strapping with replacement (1000 iterations).
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Fig. 14. 
(Left) Structure-based (DUD-E) and ligand-based (ChEMBL) training sets projected on the 

first two principal components of the D3R ligand set. (Right) Histogram of the Tanimoto 

coefficient of D3R ligands with the most similar ligand in a given training set. Similarities 

are computed using OpenBabel FP2 fingerprints.
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