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Abstract The 2015 D3R Grand Challenge pro-

vided an opportunity to test our new model for

the binding free energy of small molecules, as well

as to assess our protocol to predict binding poses

for protein-ligand complexes. Our pose predictions

were ranked 3-9 for the HSP90 dataset, depend-

ing on the assessment metric. For the MAP4K

dataset the ranks are very dispersed and equal to

2-35, depending on the assessment metric, which

does not provide any insight into the accuracy of

the method. The main success of our pose predic-

tion protocol was the re-scoring stage using the re-

cently developed Convex-PL potential. We make a

thorough analysis of our docking predictions made

with AutoDock Vina and discuss the effect of the

choice of rigid receptor templates, the number of

flexible residues in the binding pocket, the binding

pocket size, and the benefits of re-scoring.

However, the main challenge was to predict ex-

perimentally determined binding affinities for two

blind test sets. Our affinity prediction model con-

sisted of two terms, a pairwise-additive enthalpy,

and a non pairwise-additive entropy. We trained

the free parameters of the model with a regularized

regression using affinity and structural data from

the PDBBind database. Our model performed very

well on the training set, however, failed on the two
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test sets. We explain the drawback and pitfalls of

our model, in particular in terms of relative cover-

age of the test set by the training set and missed

dynamical properties from crystal structures, and

discuss different routes to improve it.

keywords : protein-ligand docking; machine

learning; scoring function; ridge regression; param-

eter estimation

1 Introduction

The Community Structure-Activity Resource (CSAR)

was created in 2008 from the desire to provide

high-quality experimental data to the community

that is developing new computational tools. CSAR

organized the first benchmark exercises in 2010

that highlighted the difficulties to predict the bind-

ing free energy of protein-ligand complexes, and

discovered that some properties such as hydrogen

bonding cause more trouble than the ligand size

[1]. The goal of the 2011-2012 blind exercises was

to compare improvements for pose prediction, en-

richment, and relative ranking of congeneric series

of compounds with a set of four protein targets.

One of its conclusions was that correct ranking

and correct pose prediction are not necessarily cor-

related [2]. This led to the CSAR Benchmark Ex-

ercise 2013 and 2014, which focused on the further

improvement of the ability of computational meth-

ods to correctly predict binding poses and affini-

ties. The successor of CSAR, the Drug Design Data

Resource (D3R, www.drugdesigndata.org), is a

new effort for docking and scoring data hosted at

UCSD. It serves the same purpose as CSAR of pro-

viding high-quality experimental data for testing

www.drugdesigndata.org


and improving ligand-protein docking algorithms

and their scoring protocols.

The 2015 D3R Grand Challenge provided two

unpublished datasets of protein-ligand co-crystal

structures with the measured affinities to assess

the current algorithms for pose and affinity predic-

tions. The first dataset, referred to as HSP90, con-

tained 8 crystal structures of the ATP site of the

Hsp90 protein with resolution < 2.0 Å, as well as

binding data for 180 compounds across five orders

of magnitude and three chemical series. The chal-

lenge for this dataset was to predict the binding

poses of 6 ligands spanning all three chemical se-

ries, and also to predict binding affinities for these

6 ligands as well as for the other 174 ligands. The

second dataset, referred to as MAP4K4, comprised

18 compounds and crystal structures of a kinase

protein, which is a member of the STE20 family,

with resolution < 2.5 Å and inhibition/binding

data over four orders of magnitude, in many cases

confirmed by multiple assay methods. The chal-

lenge for this dataset was to predict the poses of

30 co-crystal structures containing diverse chemi-

cal series, and also to predict binding affinities of

18 of the ligand structures. Here, more co-crystal

structures than affinity data were available.

We participated in the 2015 D3R Grand Chal-

lenge mainly to assess our new developments on

the binding affinity predictions for small molecules,

but also to validate our pose prediction protocol

introduced earlier [3]. As we said, our main goal

was to assess a new approximation to the binding

free energy given by a combination of two terms,

a pairwise-additive enthalpy, and a non pairwise-

additive entropy, which in principle consists of con-
formational entropy, vibrational entropy, and sol-

vent entropy. Below we provide a detailed expla-

nation of our model with the results obtained on

the training set and the two test sets provided by

the 2015 D3R Grand Challenge.

2 Test Datasets and Organization of the

Challenge

The D3R Grand Challenge 2015 consists of two

datasets. The MAP4K4 (protein kinase kinase ki-

nase kinase) dataset was provided by Genentech

[4]. It consists of 30 ligand compounds, for which

co-crystal structures are available. For 18 of these

complexes, there are also two experimental values

provided in the results: IC50 inactive and Ki ac-

tive.

The HSP90 (Heat Shock Protein 90) dataset

was provided by AbbVie and Prof. Heather Carl-

son and CSAR colleagues at the University of Michi-

gan and consists of 180 ligand compounds of three

chemical classes (aminopyrimidines, benzimidazolones,

benzophenone-like). Experimental IC50 are avail-

able for all of these. For 8 of them, co-crystal struc-

tures are provided.

The 2015 D3R Grand Challenge was oraganized

in two stages. For the HSP90 dataset, the oraganiz-

ers provided as input 4 protein-ligand co-crystal

structures drawn from the PDB and 2 protein-

ligand co-crystal structures from the blinded dataset

that were solved with compounds of each chemical

class in three series. The oraganizers also provided

SMILES strings of the 6 ligands to be docked, of

the 2 ligands in the revealed co-crystal structures,

and of the additional 172 compounds for affinity

prediction or ranking. For the MAP4K4 dataset,

the oraganizers provided as input 2 protein-ligand

co-crystal structures drawn from the PDB with

SMILES strings of the 30 ligands to be docked,

among which 18 were selected for affinity predic-

tion or ranking. In the first stage, the goal was to

predict binding poses and binding affinities for the

selected ligands. After the end of the first stage, the

organizers made available the blinded co-crystal

structures for both datasets. In the second stage,

the goal was to predict binding affinities for the se-

lected ligands using the released co-crystal struc-

tures of protein-ligand complexes. After the end of

the second stage, the experimental binding affini-

ties for both datasets were made available.

At the first stage of the Challenge, we submit-

ted one docking pose prediction for each of the
datasets. At this stage, we additionally submitted

nine binding affinity predictions for the MAP4K4

dataset. All of these binding affinity predictions

were computed using docking poses selected by

nine different strategies.

At the second stage of the Challenge for each

of the datasets, we submitted four binding affin-

ity predictions using different prediction models.

These were computed using co-crystal structures

for the MAP4K4 dataset and top-one docking poses

for the HSP90 dataset.

3 Binding Affinity Model

3.1 Free Energy Approximation

We approximated the logarithm of the binding affin-

ity with the binding free energy, which is given as
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∆Gbind = ∆H − T∆S, (1)

where ∆H is the enthalpic difference between the

bound and the unbound states of the protein-ligand

complex, T is the temperature, and ∆S is the en-

tropic difference upon binding. The binding free

energy is a much more sophisticated function com-

pared to the potential energy, and involves not only

interaction energy between the partners, but also

changes in the internal energy of the compounds,

interactions with solvent, rearrangement of solvent

molecules and changes of conformational degrees

of freedom corresponding to the entropic loss upon

binding. Direct computation of the binding free

energy of a molecular complex, or of the relative

binding affinities associated with two ligands (i.e.,

the binding energy difference) can be carried out

with thermodynamic integration techniques. How-

ever, while this method can be applied to com-

plexes consisting of few partners of small size, it

reaches a prohibitively high computational cost,

unless specific properties of the system(s) studied

can be exploited [5,6]. For example an improved

relative binding affinity calculation was recently

proposed, using free energy perturbation / replica

exchange with solute tempering (FEP/REST, [7]).

In this method, only a small region of interest is

heated up, so that a small number of replicas is

sufficient to increase sampling and reduce the ef-

fects of quasi-nonergodicity. However, even if the
selection of this region can be automated to some

extent [6], this task in non trivial in all generality.

Therefore, in this work we adopted the follow-

ing computational strategy. First, we approximate

the enthalpic contribution ∆H using a pair-wise

distance-dependent knowledge-base potential func-

tion that has been successfully applied to protein-

protein and protein-ligand scoring [3,8,9], and whose

coefficients are obtained from knowledge-base us-

ing a machine-learning technique. Second, we ap-

proximate the entropic contribution T∆S with a

set of geometric descriptors. These represent the

non pairwise-additive part of the binding free en-

ergy [10] and have been recently demonstrated to

perform very well on the protein-protein structure-

affinity benchmark [11]. Below, we provide a more

detailed description of the two contributions into

the binding free energy.

3.2 Enthalpic Contribution

We represent the enthalpic contribution to the bind-

ing free energy as a linear functional F defined for

all possible configurations of a protein-ligand com-

plex [3,9]. To simplify the shape of the functional,

we make several assumptions. First, we assume

that F depends only on the interface between the

protein and the ligand. We defined the interface as

a set of atom pairs at a distance smaller than a cer-

tain cutoff distance rmax such that the first atom

in each pair belongs to the protein and the second

atom in each pair belongs to the ligand. We use

the value of the cutoff distance of 10 Å, which was

adapted from previous works [12,13,14,15,16,17,

18,19]. It has been previously demonstrated that

even smaller distances of 6 Å work somewhat well

and that the quality of the scoring function does

not improve after the cutoff distance of 12 Å. Sec-

ond, we assume that both a protein and a ligand

can be represented as a set of discrete interaction

sites located at the centers of atomic nuclei. We di-

vide all interaction sites into M types according to

the properties of corresponding atomic nuclei, such

as element symbol, aromaticity, hybridization, and

polarity, resulting in a total of M×(M+1)/2 pairs

of interactions. An interaction between two sites

can be also regarded as an interaction between two

atoms of certain types. Third, we assume that F

depends only on the distribution of the distances

between the interaction sites, i.e. the number of

site pairs at a certain distance,

F (P ) ≡ F (n11(r), .., nkl(r), .., nMM (r)) ≡ F (n(r)),

(2)

where nkl(r) is the number density of site-site pairs

at a distance r between two sites k and l, with site

k on the protein, and site l on the ligand, where M

is the total number of interaction types. Finally, we

assume that F is a linear functional, such that we

can write the approximation to the entalpic con-

tribution as

∆H ≈
M∑
k=1

M∑
l=k

rmax∫
0

nkl(r)Ukl(r) dr, (3)

where Ukl(r) are unknown functions that are de-

duced from the training set of binding affinities

for protein-ligand complexes. From now on, we will

call these functions scoring potentials. We compute

the site-site number densities for each protein-ligand

complex nkl(r) as a sum of Gaussian-distributed

distances between interaction sites of types k and
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l as

nkl(r) =
∑
uv

e−
(r−rij)

2

2σ2 , (4)

where σ is the standard deviation, which is con-

stant for all distributions. The sum is taken over

all pairs of sites uv of types k and l separated by

a distance rij smaller than a certain threshold dis-

tance rmax, with the first site located on the pro-

tein, and the second site located on the ligand.

In order to determine unknown scoring poten-

tials Ukl(r) (Eq. 3), we decompose them along with

the number densities nkl(r) in a polynomial basis,

Ukl(r) =
∑
q

wklq ψq(r), r ∈ [0; rmax]

nkl(r) =
∑
q

xklq ψq(r), r ∈ [0; rmax],
(5)

where ψq(r) are orthogonal basis functions on the

interval [0; rmax], and wklq with xklq are the expan-

sion coefficients of Ukl(r) and nkl(r), respectively.

Given this, the enthalpic contribution ∆H can be

expanded up to the order Q as

∆H ≈
M∑
k=1

M∑
l=k

Q∑
q

wklq x
kl
q = (w · x),

w,x ∈ RQ×M×(M+1)/2

(6)

We will refer to the vector w as to the scoring

vector, whose value is to be determined from the

knowledge-base, and to the vector x as to the struc-

ture vector that is computed from the structural

data. For the estimation of binding affinity, we

used the maximum expansion order Q = 10 and

the number of types M = 48, as it is explained be-

low. Thus, the dimensionality of the scoring vector

w and the structure vector x is Q ×M × (M +

1)/2 = 11, 760.

3.2.1 Atom Types of the Enthalpic Contribution

Our knowledge-based enthalpic contribution to the

binding free energy requires definition of the atom

types. We assigned the types to the atoms of both

proteins and small molecules according to their

physical and chemical properties as well as their

functional groups. To do so, we started with 164 in-

ternal atom types inspired by the fconv library[20]

and grouped them by measuring the statistical sim-

ilarity of distance distribution functions between

different atom types in the training data set. Over-

all, our parameterization consists of 48 atom types.

More precisely, we have 17 types for nitrogen, 9

types for oxygen, 8 types for carbon, 4 types for

sulphur, 2 types for phosphorus, and 8 types for

halogens. Table S1 from Electronic Supplementary

Material lists all the used atom types along with

the chemical properties of the corresponding atoms.

We should specifically add that our model has

no explicit hydrogen atoms. Generally, it is not

a trivial task to correctly predict positions of all

missing hydrogens. For example, their positions

depend on experimental parameters of the system,

such as pH. Neither our model has directional bonds.

Introducing explicit hydrogen atoms or angular de-

pendency would add additional degrees of freedom

(or features) to our model, thus increasing the size

of the feature space.

3.3 Entropic Contribution

Of particular interest when modeling macro-molecular

complexes are terms meant to code entropic prop-

erties, in particular conformational entropy, vibra-

tional entropy, and solvent entropy. To model the

latter two terms, we use geometric features re-

cently introduced in [10], which proved instrumen-

tal to obtain state-of-the-art affinity predictions

for the protein - protein complexes of the structure-

affinity benchmark [11]. In a nutshell, these de-

scriptors dissect the surface and volume proper-

ties of the isolated subunits and of the complex

whose affinity is to be estimated. Their rationale is

to replace the buried surface area (BSA), namely

the portion of the exposed surface of both part-

ners which gets buried upon complex formation

[21], with a more informative descriptor. While the

BSA exhibits a remarkable correlation with various

biophysical quantities [22], it does not account for

interface shape and packing properties, these lat-

ter attributes being of interest to model entropic

changes.

Interface definition. We define interface atoms us-

ing the parameter free Voronoi interface model.

It is based on the α-complex derived from the

Voronoi (power) diagram of the atoms, and has

been proposed in [23,24]. In a nutshell, define the

restriction of an atom as the intersection between

its ball in the solvent accessible model and its cell

in the Voronoi diagram. The Voronoi interface iden-

tifies pairs of neighboring restrictions, such that

each pair involves either two different partners or

a partner and the interfacial solvent. The atoms
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found in at least one such pair are denoted I and

their complement IC .

Inverse volume-weighted internal path length (IVW-IPL)

and variants. This parameter encodes the size and

morphology of the interface and takes atomic pack-

ing into account. Its definition involves three ingre-

dients.

The first one consists in the interface atoms I
contributing to the Buried Surface Area, identi-

fied with the aforementioned Voronoi based model

[24]. Once identified, the interface atoms of a part-

ner define its binding patch (Fig. 1(A)). The second

one is the notion of shelling order (SO), namely an

integer value assigned to the interface atoms of a

partner, and measuring the distance to the bound-

ing patch boundary (Fig. 1(B)). The shelling or-

der of atom a is denoted SO(a). The third one

is the packing of an atom. Atomic packing is de-

fined for an atom in a structure which may be

the isolated subunit containing this atom or the

complex defined by these subunits. Following clas-

sical works [25], we define the atomic packing as

the volume of the solid defined by the intersec-

tion between the ball of the atom (in the solvent

accessible model) and the Voronoi region of this

atom in the structure (the isolated subunit or the

complex) ([26] and Fig. 1(CD)). This volume is

denoted volume bound(a) for atom a.

Using these notions, the IVW-IPL is defined as

follows:

IVW-IPL =
∑
a∈I

SO(a)

volume bound(a)
(7)

On the one hand, the shelling order refines so-

called core-rim models [21]. Borrowing to the no-

tion of cooperative effects involving non-bonded

weak interactions, an isotropic or disk-like inter-

face is indeed expected to be more stable than an

elongated one—even if their surface areas match.

On the other hand, the atomic packing encodes the

local density of neighbors of a given atom, and thus

provides a measure for local interactions (hydro-

gen bonds, van der Waals interactions). Note that

packing is a subtle quantity related to the enthalpy

- entropy compensation [27,28], as its properties

strike a balance between enthalpy (a large num-

ber of neighbors favors interactions) and entropy

(by restricting the moving freedom of atoms, tight

packing is detrimental for dynamics yielding an en-

tropic penalty assuming they were free to move in

the first place).

We also use two variants of the previous quan-

tity. First, the inverse volume sum which is the

same as IVW-IPL except that SO(a) is replaced

by 1 in Eq. (7). Second, the number of atoms at

interface which can be written as in Eq. (7), but

replacing SO(a)/Vol(a) with 1. These two quantities

essentially isolate the contributions of the numer-

ator and denominator in Eq. (7) so that the model

parameters can be adjusted separately.

Remark 1 The previous quantities were computed

using the following programs from the Structual

Bioinformatic Library (http://sbl.inria.fr >

Applications): sbl-vorshell-bp-ABW-atomic.exe [24]

for binding patches and atomic shelling orders 1,

and sbl-vorlume-pdb.exe [26] for atomic volumes

and surface areas 2.

Solvent Interactions and Electrostatics. In order

to account for the interaction between the part-

ners and water molecules, we use the fractions of

charged and polar residues on the non interacting

surface (NIS) [29], NISpolar and NIScharged. The

NIS consists of the exposed surface of the partners

not involved in the interface (Fig. 1(A), IC and

SASA > 0).

We also include the atomic solvation energy, σ,

from Eisenberg et al [30], describing the free en-

ergies of transfer from 1-octanol to water per sur-

face unit (Å2). This value is positive for non-polar

atoms, and negative for polar atoms. The corre-

sponding variable, ATOM SOLV, is a weighted sum

of atomic solvent accessible surface areas (Eq. (8)),

and may be seen as the atomic-scale counterparts

of NIScharged and NISpolar:

ATOM SOLV =
∑
a∈IC

SASA(a) · σ(a) (8)

Finally, we include an intermediate-grained de-

scription of the non-interacting surface which con-

sists in the total area of polar atoms of the complex

(according to Eisenberg’s solveation parameters).

The corresponding term, POLAR SASA (Eq. (9)),

is also a weighed sum of exposed areas.

POLAR SASA =
∑

a∈ICand σ(a)<0

SASA(a) (9)

Using the introduced interactions terms, we rep-

resent the entropic contribution to the binding free

1 User manual: http://sbl.inria.fr/doc/Space_filling_
model_shelling_diagram_surface_encoding-user-manual.html
2 User manual: http://sbl.inria.fr/doc/Space_filling_

model_surface_volume-user-manual.html
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energy as a linear combination of the following

form,

T∆S ≈ w1IVW-IPL + w2NISpolar + w3NIScharged

+w4ATOM SOLV + w5POLAR SASA

(10)

Similar to the vector of free parameters w of the

enthalpic term, we will deduce free parameters w1...w5

using a machine-learning procedure, as explained

below.

Remark: Note that all the atomic descriptors ex-

cept NISpolar and NIScharged are computed for both

partners. Since the ligand is not made of amino-

acids, these two residue-level descriptors are com-

puted for the protein receptors only.

3.4 Training Set

To train our model of binding free energy given by

Eqs. 6 and 10, we collected structural and bind-

ing affinity information from the PDBBind [32,

33] database, which provides experimentally deter-

mined protein-ligand complexes deposited in the

Protein Data Bank supplied with the measured

binding affinity data. To construct the PDBBind

database, its authors manually examined the pri-

mary references for each protein-complex and col-

lected experimentally determined binding affinity

data (Kd,Ki and IC50). These constitute the “gen-

eral set” of the database consisting of 14,620 com-

plexes. Then the authors of PDBBind additionally

compiled the “refined set” to select protein-ligand

complexes with better quality out of the general

set. To do so, they applied a number of filters to

the selection regarding binding data, crystal struc-

tures, as well as the nature of the complexes. For

the training, we used 3,706 complexes from the lat-

ter “refined set” of PDBBind release 2015, which

contains three-dimensional structures of resolution

equal to or better than 2.5 Å with the correspond-

ing binding data, which includes Kd,Ki, and IC50

values.

3.5 Training Models

Entropy only model. We trained a simple model

consisting only of the five variables encoding the

entropic contribution. Because of its small size, no

regularization was needed and we resorted to or-

dinary least-squares regression to compute the pa-

rameters. Namely, the following function is mini-

mized:

C(w) =
∑
i

(
yi −wTxi

)2
, (11)

where wi, 1 ≤ i ≤ 5 are the parameters corre-

sponding to variables xi, 1 ≤ i ≤ 5, and yi are

experimentally measured logKd/Ki values.

Enthalpy only and combined model. Our model for

the binding affinity contains 11,765 free parame-

ters (11,760 and 5, respectively introduced in sec-

tions 3.2 and 3.3) that were to be deduced from

3,706 experimentally measured data points. Be-

cause the dimensionality of our problem is several

times larger compared to the size of the training

set, to deduce the free parameters we chose a re-

gression model with regularization. After several

initial experiments with different regression mod-

els, we stopped at the linear ridge (LRR) and ker-

nel ridge regressions (KRR), mainly because of

their speed for our data [34]. The linear and kernel

ridge regressions minimize the following cost func-

tion, which consists of the regression term and the

regularization term,

C(w) =
∑
i

(
yi −wTxi

)2
+ λ||w||22, (12)

where yi are experimentally measured logKd/Ki

values, xi are features computed from 3D struc-

tures of protein-ligand complexes as described above,

and λ is the adjustable regularization parameter

that determines the importance of the regulariza-

tion term with respect to the regression term. Its

optimal value is determined using the cross vali-

dation procedure. For the kernel regression model,

we used a Gaussian kernel to compute the inner

product between feature vectors. This allowed us

to introduce a non-linear relation between our fea-

tures and the binding affinity data.

3.6 Computational Details

To train our prediction model with LRR and KRR,

we used the SHOGUN C++ library [35]. We found

two adjustable parameters, the regularization pa-

rameter λ, and the width of the Gaussian kernel,

using a 5-fold cross validation. The confidence in-

terval for the cross-validation was set to 95% and
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Ic, SASA = 0

Ic, SASA > 0

I

(A) (B)

(C) (D)

Fig. 1 Structural parameters used in this work. (A) A fictitious 2D complex and its interface atoms label
highlighted in color. The binding patch on each partner consists of one layer of atoms (I, colored solid balls), as
identified by a Voronoi interface model [23,24]. The non interface atoms (Ic) are ascribed to two categories: those
which retain solvent accessibility (SASA > 0, dashed balls), and those which do not (SASA = 0, dash-dotted
balls) (B) Each interface atom is assigned its shelling order, namely an integer equal to the smallest number of
atoms traveled to reach an exposed non interface atom, i.e. an atom belonging to Ic and with SASA > 0 (in grey)
[31]. (C,D) Atomic packing measured by atomic volumes. The volume of an atom is defined as the volume of the
intersection between its ball in the solvent accessible model, and its Voronoi cell [26]. Note that this quantity is
defined even if the atom retains solvent accessibility. Practically, interfaces and binding patches are computed with
Vorshell[24], while atomic surface areas and volumes are computed with sbl-vorlume-pdb.exe [26]. Both programs
are available from the Structural Bioinformatics Library (SBL), see http://sbl.inria.fr.

the number of runs was set to 3. Atomic typiza-

tion for the enthalpic features was computed us-

ing the Knodle library [36] available at https://

team.inria.fr/nano-d/software/Knodle. Geo-

metric descriptors for the entropic features were

computed using the Structural Bioinformatics Li-

brary available at http://sbl.inria.fr.

4 Pose Prediction Protocol

To generate putative binding poses of a ligand with

a protein, we used the AutoDock Vina software

package with the default scoring function[37]. Us-

ing AutoDock Vina, we generated 1,000 docking

solutions for the subsequent re-scoring. To start

the AutoDock Vina docking, we detected the bind-

ing pockets of each protein-ligand complex by anal-

ogy with the known homologous complexes. Using

PyMOL and the AutoDock Vina plugin available

at http://wwwuser.gwdg.de/~dseelig/adplugin.

html [38], bounding boxes were fitted to the bind-

ing pockets. For the MAP4K4 dataset, we pro-

gressively tested three bounding boxes of increas-

ing volumes, ranging from 6,125 to 8,685 Å3 for

the 4OBO receptor, and ranging from 5,610 to

12,472 Å3 for the 4U44 receptor. In the obtained

AutoDock Vina configuration files, the parame-

ter num modes was set to 1,000 and exhaustive-

ness to 100. We chose all the ligands to be flex-

ible during the docking procedure, and we kept
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all the protein residues inside the binding pockets

rigid. To test the effect of flexible receptor residues,

we ran two additional docking simulations for the

MAP4K4 dataset. First, we allowed residues Tyr

36, Lys 54, Met 105, Phe 107, and Asp 171 to be

flexible. Second, we allowed residues Tyr 36, Met

105, and Phe 107 to be flexible. However, we were

not satisfied by the initial sampling results and

did not re-score the predictions. We used the de-

fault assignment of ligand bond orders predicted

by AutoDock Tools. However, one of the conju-

gated double bonds in the HSP90 set was falsely

marked as rotatable. Also, we did not have flexi-

bility in non-aromatic cycles, i.e. in cyclohexyl. To

create the initial three-dimensional models of lig-

ands given in the SDF format, we used the Open

Babel conversion library[39]. We used the provided

templates as the models of protein receptors, 4OBO

and 4U44 for all the ligands in the MAP4K4 dataset

and 2XDX (HSP90 73 and HSP90 179 ligands),

3OW6 (HSP90 40 and HSP90 44 ligands), 4YKR

(HSP90 40 and HSP90 44 ligands), and 4YKY (HSP90 164

and HSP90 175 ligands) for the Hsp90 dataset.

Then, we re-scored the docking solutions with the

Convex-PL scoring function [3], without any fur-

ther structure optimization, and ranked the poses

according to the computed values. If multiple rigid

receptor templates or multiple bounding boxes around

the binding pockets were used, we re-scored the

docking solutions together from all the predictions.

For the first stage of the challenge, we submitted

five top predictions for each protein-ligand com-

plex for the two datasets. At the second stage of

the challenge, we used top-one predictions for the

HSP90 dataset for the subsequent re-scoring with

multiple scoring functions to predict the binding

affinities. At this stage, we did not predict binding

poses for the MAP4K4 dataset, since the co-crystal

structures were made available by the organizers.

For the assessment of docking poses we used

the LigAlign analysis program [40] written for the

PyMOL package [41]. We visually inspected the

structural alignment of all the ligands in MAP4K

and HSP90 datasets and corrected the alignment

weight function of LigAlign when needed for the

correct alignment.

5 Results and Discussion

5.1 Predicted Docking Poses

Table 1 lists results for our docking predictions for

the two sets, MAP4K and HSP90. This table shows

the averaged assessment results for the top-1 bind-

ing poses, best binding poses, and all the five poses

for each protein-ligand complex. As it can be seen

from the table, we obtained good predictions for

the HSP90 set with the mean RMSD for the best

pose of 0.65 Å. These poses along with the crys-

tallographic solutions are shown in Fig. 2. For the

MAP4K set, however, AutoDock Vina experienced

sampling problems for some of the large ligands.

More precisely, in some regions of space no samples

were generated while other were sampled densely.

As a result, long ligands did not find their place

into the corresponding binding pockets. For ex-

ample, when using 4U44 template to model the re-

ceptor, the minimum RMSD in top 1,000 docking

poses for MAP12 ligand was 11.2 Å, for MAP13

ligand was 6.5 Å, and for MAP17 ligand was 7.9 Å.

Similarly, when using the 4OBO template to model

the receptor, the minimum RMSD in top 1,000

docking poses for MAP12 ligand was 5.5 Å, for

MAP13 ligand was 5.0 Å, and for MAP15 ligand

was 5.0 Å. Conversely, for small ligands such as

MAP03, MAP04, MAP21, MAP22, MAP30, and

MAP32, we could obtain the minimum RMSD in

top AutoDock Vina 1,000 docking solutions within

1 Å at least for one out of two rigid receptor

templates. Also, since we did not relax the ini-

tial protein structures, some of our binding poses

had steric clashes with bulky protein residues, such

as phenylalanines. Overall, for the MAP4K set, we

achieved the mean RMSD for the best pose of 3.52
Å. Fig. 3 shows some of the successful predictions

for this set.

In the MAP4K set predictions there is a big dif-

ference of 3.58 Å between RMSD values of mean

pose 1 and mean best pose. This is mostly due

to the choice of different templates, namely, both

4OBO and 4U44 for all of the predicted ligands. If

we discard 4U44-based predictions from the sub-

mission, the difference between RMSD values of

mean pose 1 and mean best pose reduces to 1.08 Å.

Similarly, if we discard 4OBO-based predictions,

this difference reduces to 1.71 Å. The difference be-

tween RMSD values of mean pose 1 and mean best

pose for the HSP90 set is explained by a flipped

ring in the HSP90 164 ligand ranked first by the

Convex-PL potential.

An interesting question is to which extent re-

scoring with an additional potential is useful for

successful pose predictions. To answer this ques-

tion, we analyzed 1,000 top poses predicted by

AutoDock Vina. Table 2 shows RMSD values of

ten docking simulations for the MAP4K dataset
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Obtained results ( overall rank )

dataset
#

submissions
RMSD, Å RSR RSCC

mean
pose 1

mean
best pose

mean
all poses

mean
pose 1

mean
best pose

mean
all poses

mean
pose 1

mean
best pose

mean
all poses

MAP4K 35 7.1 (28) 3.52 (12) 6.54 (25) 3.39 (7) 2.72 (2) 3.43 (8) 0.37 (20-29) 0.15 (27-35) 0.35 (21-31)
HSP90 52 1.07 (8) 0.65 (5) 1.31 (5) 3.57 (5) 3.12 (3) 3.8 (3) 0.71 (8-9) 0.57 (7-9) 0.7 (5-6)

Table 1 Assessment of the docking pose predictions for the MAP4K and HSP90 datasets. Here, RMSD states
for root mean square deviation, RSR states for real space R-factor, and RSCC states for real space correlation
coefficient. RMSD is a similarity measure of an atomistic model with the one obtained experimentally. RSR and
RSCC are measures of the similarity between an electron-density map calculated directly from a structural model
and one calculated from experimental data.

computed with respect to co-crystal structures. We

can clearly see that re-scoring with the Convex-PL

potential significantly improves the quality of the

best pose among top 5 poses. This is true for all

AutoDock Vina simulations of this set. However,

re-scoring did not improve the mean best pose, nei-

ther it improved the mean among top 5 poses. Ta-

ble 3 shows the analysis of 100 poses predicted

by AutoDock Vina for the HSP90 dataset. Here

we see that re-scoring with the Convex-PL poten-

tial significantly improves all the RMSD values,

namely, the mean top pose, the mean best pose,

and the mean among all top 5 poses. To conclude,

we strongly believe that the default scoring func-

tion of AutoDock Vina is too simplistic, since it

is mainly designed to describe steric interactions,

thus an additional re-scoring step with a more so-

phisticated scoring function is required. We also

think that a subsequent gradient-based optimiza-

tion step can further improve the quality of pre-

dictions.

Another interesting question is how much the

quality of pose predictions depends on the choice

of the rigid receptor template, the number of flexi-

ble residues in the binding pocket, and the binding

pocket size. We cannot answer this question gen-

erally, since the conclusions should depend on the

sampling method. However, we can draw certain

conclusions from our docking experiments with AutoDock

Vina, which is one of the most popular docking

methods. First, if we analyze the effect of the size

of the search space in the binding pocket, we can

clearly see that the search smaller the volume, the

higher the probability to find a better docking pose

(see column 4 in Table 2). This emphasizes the in-

sufficient sampling of the binding pocket by AutoDock

Vina even with the sampling parameters chosen

much higher than the default values (num modes

set to 1,000 and exhaustiveness set to 100). Sec-

ond, flexibility of some of the receptor residues

does not, generally, improve the quality of the pre-

dictions. This is probably connected to the previ-

ous problem, i.e. the insufficiently sampled search

space, which is much larger in this case. Finally,

the success of the pose prediction critically de-

pends on the chosen receptor template. This de-

pendency cannot be seen clearly in results pre-

sented in Table 2 for the MAP4K dataset. How-

ever, we analyzed AutoDock Vina predictions for

the HSP90 set, where several co-crystal structures

are available for the same family of ligands. Ta-

ble 3 shows RMSD values to co-crystal structures

for the HSP90 73 and HSP90 179 ligand predic-

tions if started with 2XDX and 2JJC templates,

and also for HSP90 40 and HSP90 44 ligand pre-

dictions if started with 4YKR, 3OWD, and 3OW6

templates. We can see very large deviations in the

best pose RMSD value depending on the chosen

receptor template. Thus, it is very critical to pre-

select the best receptor model for each of the ligand

in a set prior to starting the docking simulations.

5.2 Affinity Model Training

As a first affinity prediction computational exper-

iment, we trained our affinity models using the

linear and the kernel ridge regressions. Table 4

lists the training results after a five-fold cross val-

idation. We should mention that all the features

were scaled to an interval [0; 1] prior to the train-

ing. As further computational experiments demon-

strated, in order to have an affective regulariza-

tion, it is sufficient to properly scale the five en-

tropic features, since they have very different am-

plitudes compared to all the enthalpic features. We

also noted that the regularization yielded a dense

model, more specifically, the linear model had 5134

/ 11765 i.e. 43% of non null terms. This is mainly

because some of our 11760 enthalpic features are

never met in protein-ligand complexes from the

training set, and also because the l-2 norm used in

our regression models produces a dense solution.

This said, it appears that enthalpy is more im-

portant for the prediction of the binding affinities,

compared to entropy. We can also see that when a

linear model is used it is important to have both
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AutoDock Vina scoring function results

dataset template
# receptor

flexible
residues

search
volume, Å3

RMSD, Å, for 5 top poses RMSD, Å, for 100 top poses RMSD, Å, for 103 top poses
mean
pose 1

mean
best pose

mean
all poses

mean
best pose

mean
all poses

mean
best poses

mean
all poses

MAP4K 4OBO 0a 8,685 5.91 5.41 5.78 3.73 6.30 2.56 6.65
MAP4K 4OBO 0a 7,765 5.86 5.31 5.79 3.79 6.20 2.61 6.69
MAP4K 4OBO 0a 6,125 5.84 5.48 5.84 2.94 6.35 1.96 7.39

MAP4K 4OBO 5b 10,965 7.97 7.50 8.01 7.26 8.28 - -
MAP4K 4OBO 3c 7,765 8.20 7.60 8.15 8.17 7.00 - -
MAP4K 4U44 0a 12,472 5.50 5.13 5.43 3.60 5.96 2.84 6.21
MAP4K 4U44 0a 10,200 5.74 5.03 5.53 3.44 5.93 2.56 6.41
MAP4K 4U44 0a 5,610 5.42 5.03 5.42 3.15 5.86 2.40 6.39

MAP4K 4U44 5b 12,472 9.97 9.17 9.72 8.45 9.82 - -
MAP4K 4U44 3c 8,479 5.71 4.72 5.59 3.45 5.84 - -

a The receptor protein was kept rigid.
b Five flexible residues on the receptor protein were chosen as Tyr 36, Lys 54, Met 105, Phe 107, and Asp 171.
c Three flexible residues on the receptor protein were chosen as Tyr 36, Met 105, and Phe 107.

Table 2 Assessment of the docking pose predictions for the MAP4K set when only using the AutoDock Vina
scoring function. For each of the two datasets five docking simulations were performed, three with the rigid receptor
and bounding boxes around the binding site of a different size, and two with some residues of the receptor inside
the binding pocket allowed to be flexible. Only the rigid simulations were used for the subsequent re-scoring. RMSD
to the ligands of experimentally obtained structures are computed for the top 5 poses, top 100 poses, and top 1,000
poses.

AutoDock Vina scoring function results

dataset template
RMSD, Å, for 5 top poses RMSD, Å, for 10 top poses RMSD, Å, for 100 top poses

mean
pose 1

mean
best pose

mean
all poses

mean
best pose

mean
all poses

mean
best poses

mean
all poses

HSP90 multiple 2.27 1.22 1.94 0.81 2.18 0.65 3.42
HSP90 73 2XDX 1.09 1.00 1.09 1.00 2.51 1.00 4.03
HSP90 73 2JJC 5.46 5.46 5.48 4.35 5.32 3.75 5.16
HSP90 179 2XDX 2.86 2.71 2.80 0.50 2.45 0.41 3.39
HSP90 179 2JJC 3.45 3.38 3.58 1.98 3.31 1.55 3.92
HSP90 40 4YKR 0.59 0.46 0.58 0.43 0.95 0.43 4.23
HSP90 40 3OWD 5.41 5.41 5.49 4.89 5.62 3.22 5.15
HSP90 40 3OW6 0.70 0.70 2.53 0.70 3.98 0.70 5.39
HSP90 44 4YKR 2.68 2.07 2.37 2.07 2.64 1.33 5.23
HSP90 44 3OWD 7.88 5.75 6.92 5.75 6.92 5.60 7.80
HSP90 44 3OW6 2.52 2.17 2.40 1.94 2.36 1.20 3.47

Table 3 Assessment of the docking pose predictions for the HSP90 set when only using the AutoDock Vina scoring
function. RMSD to the ligands of experimentally obtained structures are computed for the top 5 poses, top 10 poses,
and top 100 poses. See main text for details.

terms in the approximation of the binding free en-

ergy. However, if we use a non-linear model, then

the additional entropic term does not contribute

to the overall accuracy of the prediction. This can

be explained by the fact that the entropic term

represents non-additive contributions to the bind-

ing free energy and it is very important to have it

in the linear model. On the other hand, when we

use the kernel ridge regression, the non-additivity

of the entropic term is efficiently replaced by the

non-linear kernel. Figure 4 shows predicted bind-

ing affinities versus experimentally measured val-

ues for both linear and non-linear models. We can

see both from Table 4 and Fig. 4 that our affinity

model predicts the training set very well, with the

correlation coefficient for LRR of 0.82 and corre-

lation coefficient for KRR of 0.92.

affinity model
#

free parameters
RMSE, in logKi/Kd units
LRR KRR

T∆S 5 2.12 1.66
∆H 11760 1.57 1.32

∆H − T∆S 11765 1.39 1.32

Table 4 Affinity model training accuracy measured as
a root mean squared error.

5.3 Affinity Model Testing

The next computational experiment was to test

the trained binding affinity model on the blind

data of the MAP4K and HSP90 datasets. Particu-

larly interesting for us was the MAP4K dataset,

since the D3R challenge organizers provided 18

co-crystal structures for the prediction of binding

affinities. Figure 5 shows the performance of our

binding model on the MAP4K dataset. Notably,

the accuracy of the model is much lower compared

to the training set.
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Fig. 2 Best binding poses for the HSP90 set. Crystallographic structures are shown in blue. Predictions are shown
in red. Molecular surface is shown for the crystallographic structure. A) HSP90 40 ligand with the 4YKQ co-crystal
structure. B) HSP90 44 ligand with the 4YKT co-crystal structure. C) HSP90 73 ligand with the 4YKW co-crystal
structure. D) HSP90 164 ligand with the 4YKX co-crystal structure. E) HSP90 175 ligand with the 4YKZ co-crystal
structure. F) HSP90 179 ligand with the 4YKU co-crystal structure.

To get insights on these disappointing perfor-

mances, we checked to what extent cases of the test

set are represented by cases from the training set,

both for the enthalpic and entropic components –

that is we work successively in the d = 11760 di-

mensional space coding enthalpic properties, and

in the d = 5 dimensional space coding entropic

properties. Following general results on the con-

vergence of nearest neighbor based regressors [42],

we compare two distributions of distances in the

d-dimensional space just defined. We set the num-

ber nearest neighbors to be 8 (≈ log 3, 706). The

first one (DTrain) is the distribution of the aver-

age distance, for each point of the training set,

to its 8 nearest neighbors in the training set it-

self (computed with the Euclidean distance in the

d-dimensional space). The second (DTest) is the

distribution of the average distance, for each point

of the test set, to its 8 nearest neighbors in the

training set.

Consider first the 11760 space coding enthalpic

properties. Computing the tuple (min, median, mean,

max) yields (0.067, 0.481, 0.496, 1.535) for DTrain,

and (0.505, 0.744, 0.739, 1.149) for DTest (see also

Fig. 6(A)). The mean and median distances almost

double in moving from DTrain to DTest. Consider

now the five dimensional space. The same tuple

(min, median, mean, max) yields (57.27, 397.20,

1113.00, 120200.00) for DTrain, and (271.9, 422.5,

418.1, 650.9) for DTest (see also Fig. 6(B)). While

the latter distribution occupies a more compact

domain, the median value is significantly larger

than that from the former distribution. Summa-

rizing, both for the enthalpy and entropy related

variables, the looser coverage of the test set by the

training set intuitively explains why the predic-

tion performance degrades when moving from the

training set to the test set.

We should add that at the first stage of the

Challenge for this dataset, we also submitted nine

different binding affinity predictions. These were

computed by re-scoring with the Convex-PL po-

tential the top binding poses predicted using nine

different docking strategies. More precisely, we pre-

dicted top-one binding poses with three bound-

ing boxes of different size around the binding site.
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Fig. 3 Examples of some of the relatively successful predictions for the MAP4K set. Crystallographic structures
are shown in blue. Predictions are shown in red. Molecular surface is shown for the crystallographic structure. A)
MAP07 ligand prediction. B) MAP11 ligand prediction. C) MAP14 ligand prediction. D) MAP18 ligand prediction.
E) MAP19 ligand prediction. F) MAP23 ligand prediction.

Fig. 4 Accuracy of the ∆H − T∆S model on the training set after a five-fold cross validation. Left : training of
the linear model. Right : training of the non-linear model.

These were permutated with receptors chosen solely

from the 4OBO template, solely from the 4U44

template, and a mix of two. The obtained Spear-

man ρ coefficients varied from 0.25 to 0.4. Respec-

tively, the Kendal τ coefficients varied from 0.15

to 0.29.

At the second stage of the Challenge, we sub-

mitted four different binding affinity predictions.

These were computed by re-scoring the co-crystal

structures with the following scoring functions : a)

the Convex-PL potential (ρ = 0.25, τ = 0.24); b)

the entropic term given by Eq. 10 trained with the

LRR model without feature rescaling (ρ = 0.44,

τ = 0.33, Eq. 11), which provided the best re-

sults; c) the free energy approximation given by

Eqs. 1,6,10 trained with the LRR model without

feature rescaling (ρ = 0.3, τ = 0.19, Eq. 12);

d) the free energy approximation given by Eqs.

1,6,10 trained with the KRR model without fea-

ture rescaling (ρ = 0.12, τ = 0.07, Eq. 12).

In case of the HSP90 dataset, we obtained very

low correlation coefficients. More precisely, we sub-

mitted four different binding affinity predictions

following the same strategy as in the previous dataset.

Re-scoring with the Convex-PL potential resulted

in ρ = 0.07 and τ = 0.05, re-scoring with the en-
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tropic term trained with the LRR model (Eq. 11)

without feature rescaling gave ρ = 0.03 and τ =

0.02, re-scoring with the free energy approxima-

tion trained with the LRR model (Eq. 12) without

feature rescaling gave ρ = 0.07 and τ = 0.05, re-

scoring with the free energy approximation trained

with the KRR model (Eq. 12) without feature rescal-

ing gave ρ = 0.15 and τ = 0.12. The quality of

the predictions is very low presumably because

most of the co-crystal structures for this dataset

were not available. Indeed, in our experiments

we used the top-1 putative docking predictions for

180 protein-ligand complexes. Even though we ob-

tained very high quality predictions for six com-

plexes with experimentally solved structures (with

a mean RMSD to crystallographic solution of about

1 Å), there is absolutely no guarantee that the

same quality of predictions holds for the rest of

174 structures in this set.

To conclude the discussion, we would like to

speculate about interpretability of the experimen-

tal affinity data. Indeed, IC50 is a measure of inhi-

bition of a specific process and Ki can be used to

relate it to binding affinity, but solely for compet-

itive agonists and antagonists. On the other hand,

Kd is related to the binding energy. Since binding

does not necessarily result in inhibition and con-

versely, the conversion between IC50/Ki and Kd

is non-trivial. Therefore, since both the model se-

lection and fitting were performed on − log(Kd), it

is not unexpected that predictions of IC50/Ki are

not accurate including the very different scales.

5.4 Conclusion

In this challenge we assessed our docking pipeline

and tested a new model to predict binding affinity.

Our docking predictions appeared to be successful,

especially for the HSP90 set. Nonetheless, we expe-

rienced certain difficulties in sampling large confor-

mational space for long ligands of the MAP4K set,

and this was the main source of inaccuracies in our

pose predictions. We critically assessed the quality

of pose predictions depending on the choice of rigid

receptor templates, the number of flexible residues

in the binding pocket, the binding pocket size,

and the subsequent re-scoring with the Convex-PL

potential. We demonstrated that re-scoring with

the Convex-PL potential significantly improves at

least the quality of the best pose among the top

5 poses. We also showed that it is very important

to choose the right receptor template and to re-

duce the size of the binding pocket (consequently,

the size of the search space) as much as possible.

Finally, we showed that flexibility of protein side

chains inside the binding pocket does not improve

the quality of docking poses.

However, our main goal in this challenge was to

test the free energy model that consists of the en-

thalpic term and the entropic term. Free parame-

ters of the model were deduced from the PDBBind

database using regression procedures. Even though

our model performed very well on the training set,

its success rates on the MAP4K and, especially,

HSP90 test sets were rather low. The mild perfor-

mances of our model owe to several facts. First,

the very large number of free parameters in the

enthalpic term possibly causes overfitting of train-

ing data. Second, as in any regression problem,

the coverage of the test set by the training set ap-

pears critical to ensure performance guarantees–as

shown by our post hoc analysis. Given this obser-

vation, an interesting research direction to be ex-

plored is the application of other regression meth-

ods, possibly more tolerant to mild coverages of

the parameter space. Finally, it should be kept in

mind that binding affinity is a subtle thermody-

namic property, calling for an exhaustive analysis

of dynamics, including conformational entropy, vi-

brational entropy, and solvent entropy. While re-

cent work has shown that reliable proxies existed

for the latter two terms, accurately accounting for

changes in conformational entropy remains an open

problem. Filling this gap calls for efficient sampling

procedures able to reveal low regions of the energy
landscape of the system, together with their oc-

cupancy probabilities. As noticed above, such pro-

cedures would also be highly valuable to sample

large conformational space.

To conclude, this work calls for two comple-

mentary extensions aiming at fostering our under-

standing of the emergence of function (i.e., bind-

ing) from a combination of structure and dynam-

ics. The first one will address cases where compact

models (such as our entropic model) can be used

reliably to estimate affinity from static pauses. The

second one will aim at going beyond such cases, so

as to obtain equally reliable estimates exploiting

conformational ensembles accurately coding more

general entropic changes (in particular conforma-

tional entropy).
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Fig. 5 Accuracy of the ∆H − T∆S model on the test set MAP4K. Left : training of the linear model. Right :
training of the non-linear model.
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Fig. 6 Coverage of the test set by the training set assessed with pairwise distances. See section 5.3
for details. (A) Distribution of distances for the 11760 parameters introduced in section 3.2 (B) Distribution of
distances for the five parameters introduced in section 3.3
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