Skip to main content
Log in

On the fly estimation of host–guest binding free energies using the movable type method: participation in the SAMPL5 blind challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We review our performance in the SAMPL5 challenge for predicting host–guest binding affinities using the movable type (MT) method. The challenge included three hosts, acyclic Cucurbit[2]uril and two octa-acids with and without methylation at the entrance to their binding cavities. Each host was associated with 6–10 guest molecules. The MT method extrapolates local energy landscapes around particular molecular states and estimates the free energy by Monte Carlo integration over these landscapes. Two blind submissions pairing MT with variants of the KECSA potential function yielded mean unsigned errors of 1.26 and 1.53 kcal/mol for the non-methylated octa-acid, 2.83 and 3.06 kcal/mol for the methylated octa-acid, and 2.77 and 3.36 kcal/mol for Cucurbit[2]uril host. While our results are in reasonable agreement with experiment, we focused on particular cases in which our estimates gave incorrect results, particularly with regard to association between the octa-acids and an adamantane derivative. Working on the hypothesis that differential solvation effects play a role in effecting computed binding affinities for the parent octa-acid and the methylated octa-acid and that the ligands bind inside the pockets (rather than on the surface) we devised a new solvent accessible surface area term to better quantify solvation energy contributions in MT based studies. To further explore this issue a, molecular dynamics potential of mean force (PMF) study indicates that, as found by our docking calculations, the stable binding mode for this ligand is inside (rather than surface bound) the octa-acid cavity whether the entrance is methylated or not. The PMF studies also obtained the correct order for the methylation-induced change in binding affinities and associated the difference, to a large extent to differential solvation effects. Overall, the SAMPL5 challenge yielded in improvements our solvation modeling and also demonstrated the need for thorough validation of input data integrity prior to any computational analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) J Comput Aided Mol Des 24(4):259

    Article  CAS  Google Scholar 

  2. Guthrie JP (2009) J Phys Chem B 113(14):4501

    Article  CAS  Google Scholar 

  3. Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) J Comput Aided Mol Des 28(4):305

    Article  CAS  Google Scholar 

  4. Muddana HS, Varnado CD, Bielawski CW, Urbach AR, Isaacs L, Geballe MT, Gilson MK (2012) J Comput Aided Mol Des 26(5):475

    Article  CAS  Google Scholar 

  5. Skillman AG (2012) J Comput Aided Mol Des 26(5):473

    Article  CAS  Google Scholar 

  6. Benson ML, Faver JC, Ucisik MN, Dashti DS, Zheng Z, Merz KM (2012) J Comput Aided Mol Des 26(5):647

    Article  CAS  Google Scholar 

  7. Yin J, Henriksen NM, Slochower DR, Shirts MR, Chiu MW, Mobley DL, Gilson MK (2016) J Comput Aided Mol Des. doi:10.1007/s10822-016-9974-4

    Google Scholar 

  8. Chang CE, Gilson MK (2004) J Am Chem Soc 126(40):13156

    Article  CAS  Google Scholar 

  9. Chen W, Chang CE, Gilson MK (2004) Biophys J 87(5):3035

    Article  CAS  Google Scholar 

  10. Houk KN, Leach AG, Kim SP, Zhang XY (2003) Angew Chem Int Ed 42(40):4872

    Article  CAS  Google Scholar 

  11. Liu SM, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) J Am Chem Soc 127(45):15959

    Article  CAS  Google Scholar 

  12. Gilberg L, Zhang B, Zavalij PY, Sindelar V, Isaacs L (2015) Org Biomol Chem 13(13):4041

    Article  CAS  Google Scholar 

  13. Zhang B, Isaacs L (2014) J Med Chem 57(22):9554

    Article  CAS  Google Scholar 

  14. Hettiarachchi G, Nguyen D, Wu J, Lucas D, Ma D, Isaacs L, Briken V (2010) PLoS One 5(5):e10514. doi:10.1371/journal.pone.0010514

    Article  Google Scholar 

  15. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44(31):4844

    Article  CAS  Google Scholar 

  16. Rogers KE, Ortiz-Sanchez JM, Baron R, Fajer M, de Oliveira CAF, McCammon JA (2013) J Chem Theory Comput 9(1):46

    Article  CAS  Google Scholar 

  17. Choudhury R, Gupta S, Da Silva JP, Ramamurthy V (2013) J Org Chem 78(5):1824

    Article  CAS  Google Scholar 

  18. Porel M, Jayaraj N, Kaanumalle LS, Maddipatla MVSN, Parthasarathy A, Ramamurthy V (2009) Langmuir 25(6):3473

    Article  CAS  Google Scholar 

  19. Gibb CLD, Gibb BC (2014) J Comput Aided Mol Des 28(4):319

    Article  CAS  Google Scholar 

  20. Gibb CLD, Gibb BC (2004) J Am Chem Soc 126(37):11408

    Article  CAS  Google Scholar 

  21. Liu SM, Whisenhunt-Ioup SE, Gibb CLD, Gibb BC (2011) Supramol Chem 23(6):480

    Article  Google Scholar 

  22. Gan HY, Benjamin CJ, Gibb BC (2011) J Am Chem Soc 133(13):4770

    Article  CAS  Google Scholar 

  23. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) J Comput Aided Mol Des 27(3):221

    Article  Google Scholar 

  24. Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7(2):525

    Article  CAS  Google Scholar 

  25. Rostkowski M, Olsson MHM, Sondergaard CR, Jensen JH (2011) BMC Struct Biol. doi:10.1186/1472-6807-11-6

  26. Jorgensen WL, Tiradorives J (1988) J Am Chem Soc 110(6):1657

    Article  CAS  Google Scholar 

  27. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105(28):6474

    Article  CAS  Google Scholar 

  28. LigPrep (2015) Version 3.6. Schrödinger, LLC, New York

  29. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M (2007) J Comput Aided Mol Des 21(12):681

    Article  CAS  Google Scholar 

  30. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47(7):1739

    Article  CAS  Google Scholar 

  31. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49(21):6177

    Article  CAS  Google Scholar 

  32. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47(7):1750

    Article  CAS  Google Scholar 

  33. Macromodel (2015) Schrödinger, LLC, New York

  34. Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) J Comput Chem 11(4):440

    Article  CAS  Google Scholar 

  35. Polak E, Ribiere G (1969) Rev Fr Inf Rech Oper 3(16):35

    Google Scholar 

  36. Kolossvary I, Guida WC (1996) J Am Chem Soc 118(21):5011

    Article  CAS  Google Scholar 

  37. Zheng Z, Merz KM (2013) J Chem Inf Model 53(5):1073

    Article  CAS  Google Scholar 

  38. Cleveland WS (1979) J Am Stat Assoc 74(368):829

    Article  Google Scholar 

  39. Cleveland WS (1981) Am Stat 35(1):54

    Article  Google Scholar 

  40. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) J Comput Chem 13(8):1011

    Article  CAS  Google Scholar 

  41. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157

    Article  CAS  Google Scholar 

  42. Berendsen HJC, Grigera JR, Straatsma TP (1987) J Phys Chem 91(24):6269

    Article  CAS  Google Scholar 

  43. Zheng Z, Wang T, Li PF, Merz KM (2015) J Chem Theory Comput 11(2):667

    Article  CAS  Google Scholar 

  44. Maestro (2015) Schrödinger, LLC, New York

Download references

Acknowledgments

We would like to acknowledge the SAMPL5 organizers for providing the data and platform for the blind challenge and global communication. NB would like to acknowledge Mr. Dario Gioia for numerous discussions related to docking of host–guest systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Merz.

Additional information

Nupur Bansal and Zheng Zheng have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, N., Zheng, Z., Cerutti, D.S. et al. On the fly estimation of host–guest binding free energies using the movable type method: participation in the SAMPL5 blind challenge. J Comput Aided Mol Des 31, 47–60 (2017). https://doi.org/10.1007/s10822-016-9980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9980-6

Keywords

Navigation