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The 2016 D3R Grand Challenge 2 provided an opportunity to test multiple protein-ligand docking pro-
tocols on a set of ligands bound to farnesoid X receptor that has many available experimental structures.
We participated in the Stage 1 of the Challenge devoted to the docking pose predictions, with the mean
RMSD value of our submission poses of 2.9 Å. Here we present a thorough analysis of our docking pre-
dictions made with AutoDock Vina and the Convex-PL rescoring potential by reproducing our submission
protocol and running a series of additional molecular docking experiments.
We conclude that a correct receptor structure, or more precisely, the structure of the binding pocket,
plays the crucial role in the success of our docking studies. We have also noticed the important role of
a local ligand geometry, which seems to be not well discussed in literature. We succeed to improve our
results up to the mean RMSD value of 2.15 – 2.33 Å dependent on the models of the ligands, if docking
these to all available homologous receptors. Overall, for docking of ligands of diverse chemical series
we suggest to perform docking of each of the ligands to a set of multiple receptors that are homologous
to the target.
keywords : protein-ligand docking; ensemble docking; flexible docking; D3R; scoring function;

Introduction

The Drug Design Data Resource (D3R, www.

drugdesigndata.org) is a successor of Commu-
nity Structure-Activity Resource [1,2] whose aim is
to advance the technology of computer-aided drug
discovery through the interchange of protein-ligand
datasets and workflows. It provides high-quality
experimental data by hosting blinded unpublished
datasets for testing and improving ligand-protein
docking algorithms and their scoring protocols.
The D3R Grand Challenge 2 provided a blinded un-

published dataset containing the farnesoid X recep-
tor (FXR) target, which was kindly contributed by
Roche and curated by D3R. This dataset contained
36 crystal structures with resolution better than 2.6
Å supplied with binding affinity data (IC50s) for 102
compounds across five orders of magnitude, com-
prising four chemical series and 6 miscellaneous
compounds. The D3R Grand Challenge 2 was or-
aganized in two stages. The oraganizers provided
as input SMILES strings and SDfiles for 102 lig-
ands, among which 36 were selected for docking
prediction. The oraganizers also provided SMILES
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strings and SDfiles of two subsets of 18 and 15
compounds for the calculation of relative binding
affinities. In the first stage, the goals were to pre-
dict crystallographic binding poses of 36 selected
ligands spanning all chemical series, predict bind-
ing affinities for all 102 ligands, and to predict the
relative binding affinities for two designated free
energy subsets of 18 and 15 compounds. After the
end of the first stage, the organizers made avail-
able the blinded co-crystal structures of 36 selected
FXR complexes. We should note that FXR 33 was
excluded from the pose prediction evaluations be-
cause of crystal artifacts found in the co-crystal
structure, and only 35 ligands were assessed. In
the second stage, the goal was to predict binding
affinities for all 102 ligands and the relative bind-
ing affinities for the two free energy subsets of 18
and 15 compounds using the released 36 co-crystal
structures of protein-ligand complexes. After the
end of the second stage, the experimental binding
affinities (IC50s) were made available.
We participated only in the Stage 1 of D3R Grand
Challenge 2 and our goal was to assess multiple
docking pose prediction protocols. Some of these
were introduced earlier [3,4], others were designed
specifically for the FXR targets. Like many other
participants, we obtained sufficiently small RMSD
values for most of the benzimidazole-containing lig-
ands. However, we did not succeed in docking of
most other groups of compounds. Below we pro-
vide a detailed explanation of our model used for
the submission and several other docking protocols
tested after the end of the challenge.

Docking strategies in previous exercises

Recently several major docking competitions were
held, namely CSAR 2013 [5], CSAR 2014 [6] and
D3R 2015-2016 [7], which became an opportunity
for many teams to assess their protein-ligand pose
and binding affinity prediction algorithms and pro-
tocols. In the course of these competitions vari-
ous methods were used including classical docking
methods [8–21], QSAR models [15, 22, 23], target-
specific scoring functions [23–25], and sometimes
combinations of these with more computationally
expensive molecular dynamics-based methods [26–
29]. The CSAR 2013 exercise also involved homol-

ogy modeling to obtain proper receptors from the
given sequences, while in CSAR 2014 protein struc-
tures were provided. In the D3R challenge, partic-
ipants were encouraged to use existing crystallo-
graphic structures from the RCSB database, which
could have been selected with ligand similarity-
based methods.
Participants reported rather classical problems,
such as the importance of taking into account the
receptor flexibility, buried water molecules, pres-
ence of explicit solvent, lack of the homologous
proteins present in databases, etc. In particular,
several approaches were used to handle the recep-
tor flexibility problem [30]. In case of a consid-
erable number of complexes with homologous pro-
teins available, their thorough inspection helped to
choose either the proper docking target, or to iden-
tify a small number of residues suitable for flexi-
ble docking protocols [28, 31]. Side-chains repack-
ing [19] and the induced-fit approach [27,32] helped
to optimize or widen the binding pockets. Flex-
ible docking programs were also used [33]. The
choice for the best strategy for picking the receptor
structure, i.e. cross-docking or docking to a certain
”closed”-form structure remains an open question,
since the best strategy seems to be dependent on
the availability of the co-crystal complexes with lig-
ands of the chemical series of interest. Both D3R
and CSAR organizers reported the difficulty of mak-
ing conclusions about the best approaches, as the
same methods used by different teams often lead
to significantly different results. Notably, impor-
tance of visual inspection of predicted structures
was mentioned in the D3R 2015 results descrip-
tion.

Methods

Docking dataset

The target receptor of the Grand Challenge 2 was
a nuclear farnesoid X receptor (FXR). A set of com-
pounds from several chemical series was provided,
36 of them were selected for the pose prediction ex-
ercise, however only 35 were used for the pose eval-
uation. These include benzimidazoles, isoxazoles,
sulfonamides, spiranes and several other unclassi-
fied molecules. The RCSB database (also knows
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as Protein Data Bank) [34] contains a large variety
of FXR structures with a different degree of homol-
ogy to the target apoprotein receptor. For exam-
ple, for the homology threshold of 30%, the RCSB
database provides about 300 of protein structures.
In these structures most of the protein 3D organi-
zation is conserved, however, short helices near the
binding site exhibit a high degree of conformational
freedom, as it is shown in Fig. 1. We should specif-
ically note that the ligands bound to FXRs from
RCSB do not include spiranes and sulfonamides,
so it was challenging to model the corresponding
targets from the docking exercise.

Figure 1: Proteins with a high sequence identity
(higher than 90 %) to the target FXR apoprotein su-
perposed to each other. Here only the A chains are
shown. Two helices with a high conformational freedom
are highlighted.

Submission protocol

For our submission, we generated 3D ligand struc-
tures starting from the corresponding SMILES
strings using OpenBabel’s gen3d command [35].
Then, we manually adjusted ligands with ambigu-
ous symmetry using geometry of small molecules
with similar functional groups from the RCSB
database as an example. No additional structure
optimization was performed at this step.
Regarding the receptors, we manually selected one
model for each target from the RCSB database first
using the homology threshold of 30 % and after se-

lecting the best model using the similarity of the
bound ligand as it was identified based on the
SMILES substrings of the functional groups. This
procedure identified 23 template receptors for 36
targets. Among these, 17 had homology to the
target sequence higher than 90 %. No additional
structure optimization of the receptors was used.
To generate putative binding poses, we used the
AutoDock Vina software package with the default
scoring function [36]. Using AutoDock Vina, we
generated 1,000 docking solutions for the subse-
quent re-scoring. In the AutoDock Vina configu-
ration files, the parameter num modes was set to
1,000 and exhaustiveness to 100. We identified the
receptor binding pocket based on the structures of
homologous FXR proteins. We chose all the rotat-
able bonds in ligands to be flexible during the dock-
ing procedure, and we kept all the protein residues
inside the binding pockets rigid. We assigned the
Gasteiger atomic partial charges and converted all
receptors and ligands to the PDBQT format using
the AutoDockTools package [37]. We did not use
explicit hydrogens either for the receptors or for
the ligands.
Finally, we re-scored the obtained poses with
the Convex-PL potential [38]. Convex-PL is a
knowledge-based scoring potential, which we al-
ready used in the previous D3R and CSAR chal-
lenges [3, 4]. It is freely available on our web-site
at http://team.inria.fr/nano-d/convex-pl/.
No additional clustering of the final poses was
made.

Self-docking protocol

Once the co-crystal FXR structures were released
by the challenge organizers, we repeated the dock-
ing tests using crystallographic structures of 35
(since FXR 33 target was skipped from the assess-
ment) receptors with the corresponding ligands. We
used a docking protocol similar to the one for the
submission. More precisely, we converted the input
crystallographic structures to the PDBQT format
and ran AutoDock Vina with the same parameters
as described above. However, this time we used the
Convex-PL scoring function inside AutoDock Vina
without the subsequent rescoring. Atomic types
were assigned using the Knodle method [39] and
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no explicit hydrogens were used.

Additional protocols

To rigorously assess the performance of different
docking strategies, in addition to the self-docking
test, we designed seven other docking experiments.
These are summarized in Table 3 and listed be-
low. In the additional docking experiments, we op-
timized several ligands and also mutated the recep-
tors whose sequence was different from the target
as it is described below.
In the first experiment (exp. 1) we repeated the
submission protocol but mutated all the receptors
to the target sequence. This protocol may be seen
as ”one ligand to one receptor” docking.
In the second experiment (exp. 2) we exhaustively
docked all the ligands used in the submission proto-
cols to each of the receptors used in the submission
plus to all other receptors with homology higher
than 90 % to the target receptor sequence. In this
experiment we mutated all the receptors to the tar-
get sequence. This protocol may be seen as ”one
ligand to multiple receptors” docking. The receptor
PDB codes used in this experiment are listed in
Table 1.

1osh 1osv 1ot7 3bej 3dct 3dcu
3fli 3fxv 3gd2 3hc5 3hc6 3l1b
3okh 3oki 3olf 3omk 3omm 3oof
3ook 3p88 3p89 3rut 3ruu 3rvf
4oiv 4qe6 4qe8 4wvd 5iaw 5ick
1s0x 3dy6 3peq 3w5p 4r06 5eit

Table 1: PDB codes of the 36 receptors chosen from
the RCSB database for the ”multiple receptors” dock-
ing protocols. Proteins with a low sequence identity are
highlighted in grey.

In the third experiment (exp. 3) we repeated exp.
2 for each of the target with all the ligand models
available as explained in more detail below. This
protocol may be seen as ”multiple ligands to mul-
tiple receptors” docking.
In the forth experiment (exp. 4) we repeated exp. 2,
where for each of the target we used only a few re-
ceptors whose bound ligand had the most similarity

to the target ligand. This protocol may be seen as
”one ligand to some receptors” docking.
In the fifth experiment (exp. 5) we complemented
exp. 2 with the co-crystal structures of the recep-
tors. This protocol may be seen as ”one ligand to
multiple+self receptors” docking.
In the sixth experiment (exp. 6) for each of the tar-
gets we docked the ligand used in the submission
to the co-crystal structure of the receptor. This pro-
tocol may be seen as ”one ligand to self receptor”
docking.
In the seventh experiment (exp. 7) for each of the
targets we docked the co-crystal structure of the
ligand to a number of receptors from exp. 2. This
protocol may be seen as ”self ligand to multiple
receptors” docking.
In addition to the above-listed experiments, we also
repeated exp.1, exp. 2, exp. 4, exp. 5, and exp.
6, where for each of the targets we complemented
some difficult ligands from the submission with their
optimized structures as explained below in more de-
tail. These experiments are labeled ”mod” in Ta-
ble 3. The original experiments are respectively
labeled ”old”.
In all the additional docking experiments we ran
AutoDock Vina with the same parameters as de-
scribed above for the self-docking protocol. More
precisely, we used only the Convex-PL scoring
function inside AutoDock Vina without the subse-
quent rescoring. Then, we selected the five top-
scored structures after a simple clusterization pro-
cedure with a symmetry-adapted ligand RMSD
threshold value of 1 Å.

Preparation of ligand structures

For all the additional experiments, we generated
3D ligand structures using OpenBabel gen3d com-
mand [35] complemented with fragments of similar
small molecules in cases when OpenBabel was un-
able to provide reasonable structures. Regarding
OpenBabel, its gen3d method generates ligands
using a set of rules and templates, followed by a
minimization in MMFF94 force-field [40]. Finally,
it performs a conformational search followed once
again by the ligand optimization.
For the additional computational experiments de-
scribed above, we used the same ligand structures
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values for mutated residues in the binding pocket
PDB code

(chain)
mean molecular

weight
mean pH at

isoelectric point
mean index of
hydrophobicity

# before after before after before after
1osv 5 129.34 106.51 6.34 5.81 18 25

1ot7 (AC) 4 118.12 110.87 5.23 5.76 26 21
1ot7 (BDE) 5 129.34 106.51 6.34 5.81 18 25

3bej 1 147.13 89.10 3.22 6.00 -31 41
3rvf 3 142.14 89.10 6.55 6.00 -17 41
3dct 2 126.11 89.10 4.45 6.00 -18 41
3dcu 2 126.11 89.10 4.45 6.00 -18 41
3gd2 2 126.11 89.10 4.45 6.00 -18 41
3hc5 2 126.11 89.10 4.45 6.00 -18 41
3hc6 2 126.11 89.10 4.45 6.00 -18 41
3p88 2 126.11 89.10 4.45 6.00 -18 41
3p89 2 126.11 89.10 4.45 6.00 -18 41
3rut 2 126.11 89.10 4.45 6.00 -18 41
3ruu 2 126.11 89.10 4.45 6.00 -18 41
4oiv 2 160.66 89.10 6.99 6.00 -23 41
4qe6 3 142.14 89.10 6.55 6.00 -17 41

4qe8 (AC) 2 160.66 89.10 6.99 6.00 -23 41
4qe8 (BD) 1 147.13 89.10 3.22 6.00 -31 41

5iaw 1 147.13 89.10 3.22 6.00 -31 41
1s0x 23 138.12 131.53 6.04 5.99 59 38

3dy6 (A) 23 133.76 139.46 5.86 5.89 49 50
3dy6 (B) 22 134.61 142.39 5.84 5.89 53 53

3peq 21 134.77 141.30 5.83 5.91 51 51
3w5p 42 138.04 138.45 5.91 6.10 51 43

4r06 (A) 22 142.89 140.26 5.71 5.89 52 60
4r06 (B) 17 134.68 127.38 5.79 5.64 19 41
5eit (A) 26 136.04 133.27 5.88 5.96 47 35
5eit (B) 25 136.20 132.71 5.90 6.06 50 38

Table 2: List of receptors with the mutated amino acids in the binding pocket used in the experiments. The binding
pocket was defined as all the residues having at least one heavy atom within the distance of 4 Å from any atom of
ligands that are available for the 36 receptor proteins and the co-crystal FXR protein targets. Proteins with a low
sequence identity are highlighted in grey. Thirteen proteins had 100% sequence identity in the binding pocket and
were excluded from the table.

as in our submission. However, for ”difficult” lig-
ands, i.e. those whose docking to the co-crystal
receptors resulted in RMSD values greater than
1.5 Å in all the top-5 poses without clusteriza-
tion, we performed an additional structure optimiza-
tion. More precisely, we optimized these ligands
using force-field-based structure optimization with
the MMFF94 force-field [40] implemented in the
Avogadro package [41]. If the gradient-based opti-
mization with MMFF94 did not converge, we used
the UFF force-field [42]. Although we used the
MMFF94 force-field optimization both in OpenBa-
bel (implicitly) and in Avogadro, the resulting con-
formations were not the same, perhaps due to the
differences between the 3D structure generation al-
gorithms, and also due to the fact that we used

different input files, 2D SDF files for OpenBabel
and SMILES strings for Avogadro. Finally, all the
structures of ligands were converted to the PDBQT
format using AutoDockTools with the default iden-
tification of rotatable bonds.

Preparation of receptor structures

To represent structural heterogeneity of the recep-
tors, we selected all the structures from the RCSB
database with the identity to the target sequence
higher than 90 %. The identity was computed with
the blastp program from the BLAST+ package [43].
This resulted in a set of 30 receptors. For the
submission, as mentioned above, we used 6 addi-
tional low-homologous receptors chosen based on
the ligand similarity to the target ligands. These
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were also added to the receptors set, resulting in a
pool of 36 structures used in the additional exper-
iments. For each of the receptors, we mutated all
the residues different from the apoprotein sequence
using the SCWRL4 tool [44] as it is described be-
low. We did not model residues that were missing
in the crystallographic structures. To structurally
align the receptors to the provided model, we use
the align command from PyMOL [45] with the de-
fault options. Finally, all the structures of recep-
tors were converted to the PDBQT format using
AutoDockTools. We treated all the receptors’ bonds
as rigid, i.e. no flexible residues were selected.

Mutations

Table 2 lists the summary of the total number and
properties of the mutated residues in the bind-
ing pocket. More precisely, we list the mean
molecular weights, pI and hydrophobicity indices
of the mutated residues before and after the muta-
tions. The reference values were taken from the
Sigma-Aldrich webpage [46]. For all the highly
homologous proteins listed in Table 2 only 1-5
residues were mutated in the binding site consist-
ing of 39-60 residues. Three of these mutations
occurred in all of these proteins and they consider-
ably changed at least one property of the residues.
These are the polar Ser342 and the hydrophilic
Glu350 and Arg455 residues that were replaced by
the hydrophobic alanine residues1. Ser342 is lo-
cated close to most of the available ligands, but its
mutation preserves the residue’s size and charge.
Arg455 is located relatively close to several aro-
matic ligand groups, and thus its turn into a more
hydrophobic alanine might be energetically favor-
able. Glu350 is situated rather close to several
other ligands, but its hydrophilic glutamate side-
chain is rotated outward from the binding pocket.
Therefore, we did not expect these mutations to
strongly influence the docking results. However, we
found it better to apply these to the protein struc-
tures. As for the low-identity proteins, although the
mean values of the pI, size and hydrophobicity in-
dex remain similar, as it can be seen from Table 2,
about a half of the mutations for each receptor lead

to significant changes of some of the residue’s prop-
erties.

Missing residues

As it was mentioned above, we did not model miss-
ing residues in the binding sites of the protein
structures that we used for the submission. For ex-
ample, in several proteins an entire helix (Gln271–
Glu285, Arg268–Phe282, Gln257–Phe282 in 1osh,
3l1b, and 4oiv, respectively) or a small loop
(Lys343-Gly347, Lys343-Pro345, Leu344-Ala346
in 3fxv, 4qe6, and 3bej, respectively) were miss-
ing. For these structures, inserting the helix model
might have been a good solution, as its conforma-
tion is conserved in all the 30 highly homologous
receptor models. This helix also appeared to have
the same conformation in a number of reference co-
crystal FXR complexes and it has no steric clashes
with any of the correct ligand poses. The miss-
ing loop has a different conformation compared to
the apoprotein in most of the co-crystal receptor
structures, and its modeling would have been more
challenging.

RMSD computation

We computed symmetry-adapted RMSD values
with a modified GetBestRMS() function from the
RDKit package [47]. Originally, this function aligns
molecules taking into account the symmetry match-
ings by iterating over them to find the best align-
ment transformation with the lowest RMSD value.
In our modification, we preserved the iteration over
all symmetry matchings and removed the alignment
part to make the function only compute the smallest
RMSD value among various symmetry matchings
without superposing the molecules. We should note
that we obtained RMSD values of our submission
slightly larger compared to those reported in the
D3R challenge results, i.e. we computed the mean
value for our submission of 2.96 Å versus 2.90 Å re-
ported by the challenge organizers. This may hap-
pen due to the differences in RMSD computation
and alignment procedures.

1Residue numbers are given with respect to the 3rvf receptor and may differ slightly for other proteins. The corresponding
apoprotein residues are Ala346, Ala354, Ala459.
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Results and discussion

Description of the docking results

Table 3 lists the top-5 pose prediction results for
all the docking experiments with Convex-PL as a
scoring function. As it is clearly seen from the ta-
ble, we obtained sufficiently good results for the
self-docking experiment with the mean RMSD value
to the solutions of 0.58 Å. This indicates that our
method is always able to predict near-native ligand
poses given as input co-crystal receptor conforma-
tions along with the correct local geometries of the
ligands. The local geometry includes bond lengths
and angles, because these are kept unchanged dur-
ing the docking procedure.
To figure out why the mean RMSD value of our
submission is about 5 times larger that the result
of the self-docking experiment, we ran another ex-
periment with docking ligands to the co-crystal re-
ceptors, which is summarized in the exp. 6 column
of Table 3. It can be seen that only in a few cases
we are not able to predict a binding pose within
3 Å RMSD. However, the co-crystal receptor struc-
ture does not guarantee the highest docking score
if there are other receptor structures present in the
docking pool. This can be seen in the exp. 5 col-
umn, where the co-crystal receptor structures were
complemented with the homologous FXR structures
from the RCSB database. For example, for the lig-
ands of FXR 4, FXR 10, FXR 11, and FXR 16 tar-
gets, our scoring function preferred non co-crystal
receptors with considerably different ligand confor-
mations.
Re-docking of the ligands to the same receptors
that we used for the submission did not affect the
mean RMSD, as it is seen from the column exp. 1
of Table 3. For some targets RMSD improved, for
others it became worse. Considerable RMSD dif-
ferences that can be seen for only several ligands
may occur due to mutation of the residues, some of
which were situated near the binding site (FXR 20,
FXR 13, FXR 15). These differences remained even
when we re-generated the ligand structures with a
force-field-based optimization.
Columns exp. 2 and exp. 3 of Table 3 list the results
of docking of each ligand (either single or multiple)
to a set of homologous FXR structures found in the

RCSB database. Overall, these experiments con-
siderably improved the docking accuracy as com-
pared to exp. 1. In case of ”easy” ligands such
as benzimidazoles, all the three strategies (exp. 1-
3) performed well. However, for more complicated
targets when the procedure of choosing a proper
receptor is unclear, docking to multiple receptors
allows to achieve better poses compared to the re-
sults of exp. 1, where we performed docking to a
single receptor.
Unfortunately, in exp. 3, which as we believed was
the most rigorous blind experiment, we obtained
a lower mean RMSD value of 2.33 Å than in
both parts of exp. 2 (2.15 Å and 2.21 Å). FXR 11
target contributed the most to this RMSD differ-
ence, as the top-2 predictions for the ”modified”
and top-4 predictions for the ”old” ligands consist
only of poses with RMSD values greater than 8
Å, which are not rejected by the subsequent clus-
terization procedure in exp. 3. The best pose was
chosen properly for only 6 out of 13 ”modified”
ligands (FXR 2, FXR 3, FXR 8, FXR 17, FXR 22,
FXR 34). Although the number of the ligands that
we re-optimized is rather small to make rigorous
conclusions, we would suggest to be careful with
the ”multiple ligand” docking protocols, as these
may require better clusterization algorithms and a
visual inspection of the obtained poses for each of
the ligands.
Docking to the smaller sets of receptors, that we
chose for each ligand manually by the ligand sim-
ilarity, aided to improve pose prediction for FXR 2
and the submission version of the FXR 11 ligand
as it is shown in the exp. 4 column of Table 3.
On the other hand, this strategy excluded some
potentially good candidates from the docking set
of receptors. For example, in the case of FXR 15
target in exp. 2, for four receptors we were able
to obtain rather low-scored poses within RMSD <
3.5 Å and the top-scored conformation with RMSD
of 4.87 Å, which preserved the sulphonamide group
in the near-native position. Nevertheless, only one
of these four receptors was in the set that we chose
for the FXR 15 target in this experiment.
Below we would like to discuss several cases of the
molecules that turned out to be the most challeng-
ing for our docking algorithms.
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a) b) c)

Figure 2: (a) Reference structure of the FXR apoprotein in complex with the FXR 18 ligand (red) and the result of
docking to the 3oki protein (blue). Conformationally conserved chains are shown in grey. The two helices on the right
have a high conformational freedom in all the homologous structures of FXR. (b) Co-crystal structure of apoprotein
superposed with 36 proteins used in ”multiple receptors” docking protocols. Here, the trp473–thr466 helix (the residue
numbers may differ for different proteins) is shown in red for the reference structure and in dark grey for the other
proteins. (c) Co-crystal ligand conformation and 30 ligands found in the highly homologous proteins (dark grey).

Importance of the receptor conformation

The most difficult target for our protocols appeared
to be FXR 18. Its ligand contains the same func-
tional groups (chlorine, amide, aromatic and cyclo-
hexane rings, planar trigonal nitrogen in the cen-
ter of the molecule) as some of the benzimida-
zole ligands from the complexes available at RCSB,
namely, 3oki, 3omk, 3oof and several other struc-
tures of human FXRs obtained by Roche in 2011
[48]. Our scoring protocol correctly identifies all
these proteins from a larger set of receptor candi-
dates, however, the co-crystal ligand binding pose
differs from our predictions by RMSD of more than
9 Å.
This can be the result of the high conformational
mobility of four of the binding pocket helices, as
highlighted in Fig. 2 (a) for the highest scored re-
ceptor model 3oki, which differ by 6.34 Å RMSD
from the co-crystal structure.
More precisely, besides the two helices that are
known to be flexible for the farnesoid X receptors, as
we have mentioned in the dataset description, two
other helices of the binding site of our top-scored
receptor 3oki have different conformations compared
to the co-crystal receptor structure. These are con-
nected with a loop and located on the opposite site
of the binding pocket, as it is shown at the left side
of Fig. 2 (a). This region seems to be relatively
conserved in all of the proteins that we used for the
”multiple receptors” docking protocols. The correct
receptor conformation superposed with these pro-

teins can be seen in Fig. 2 (b), where it is ”buried”
under the the other proteins’ conformations except
for a short trp473–thr466 helix, which is located
near one of the rings of the FXR 18 ligand. In the
co-crystal structure, this cyclohexane ring has a dif-
ferent 3D configuration from all the other ligands
from the targets we used for the docking experi-
ments, as it is shown in Fig. 2 (c). Thus, the correct
docking poses of this part of the ligand result in
steric clashes with the flexible helices of the non
co-crystal receptor structures.

A similar situation is observed for another difficult
FXR 4 target. Here, our docking algorithm prefers
the above-mentioned receptors found in complex
with benzimidazole ligands, in particular, the 3oki
one, which has a benzole ring with a chlorine sub-
stitute and two cyclohexane rings. Fig. 3 shows the
best predicted poses for FXR 4 and FXR 18 ligands
superposed with the ligands of the 3oki structure.
These, unfortunately, are not the right solutions,
and the conformation of one of the 3oki helices dif-
fers from the co-crystal structure of FXR 4. Thus,
the structure of the 3oki receptor would once again
cause clashes with the co-crystal pose of the ligand.
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Figure 3: (a) The best predicted ligand pose for FXR 18
(RMSD=9.34, blue) superposed with the 3oki ligand
(chain A, grey). (b) The best predicted ligand pose for
FXR 4 (RMSD=6.74, blue) superposed with the 3oki
ligand (chain C, grey).

We have previously mentioned the FXR 15 ligand,
for which we were able to find only three recep-
tors, docking to which allowed to obtain poses with
RMSD values of about 3–3.5 Å (in exp. 2). For
each of these receptors, the sulfonamide-containing
part of the ligand is predicted correctly, while the
flexible ”tails” adopt other conformations to avoid
steric clashes with the protein side chains. Over-
all, from the ”self ligand to multiple receptors” ex-
periments we can see that we would not be able
to predict neither of FXR 4, FXR 15, and FXR 18
docking poses without the co-crystal protein struc-
tures even if we use the co-crystal geometries of
the ligands.
Finally, we would like to mention the importance of
the correct receptor sequence in the binding pocket.
As it can be seen from a comparison of Table 3 with
Table S1 from Supporting Information, the mean
RMSD values for the experiments with the mutated
proteins are lower except for exp. 1. In this exper-
iment, docking several ligands to low-homologous
receptors became less successful after mutating a
big portion of their residues.

Importance of the ligand geometry

If we consider the results obtained for docking the
ligand models to the co-crystal receptors (exp. 6),
the spiro and sulfonamide-containing FXR 11 lig-
and docking poses have the lowest quality with
RMSD of more than 10 Å. Figure 4 (a) shows the
2D structure of the FXR 11 ligand. As the self-

docking results are close to the co-crystal poses, it
seems that we have certain problems with the 3D
structures of the FXR 11 ligand that we generated
from its SMILES string. We should note that visu-
ally these structures look very similar to each other
and to the co-crystal ligand.
Although the clusterization procedure helped to
achieve a near-native pose for the ligand that we
used in submission, the best scored poses of this
ligand are ’flip-flopped’ in comparison to the co-
crystal pose resulting in high RMSD values of
about 9 Å. Therefore, we re-generated its 3D struc-
ture once again in Avogadro, which lead to even
worse docking pose of 10 Å RMSD and caused
us to thoroughly examine the structure of this lig-
and. A closer look on the reference co-crystal lig-
and conformation revealed rather small differences
in valence and dihedral angles that, however, seem
to be crucial for the correct docking. In particular,
we have found two regions where small changes in
geometry lead to improvement of, at least, docking
of the ligand generated in Avogadro to the refer-
ence receptor. More precisely, the C25 atom of
the FXR 11 ligand has sp3 hybridization, although
its geometry may be somehow distorted by the ad-
joined aromatic ring, while the value of the C26-
C25-N13 angle in the reference structure shown in
Fig. 4 (b) is more than 120◦. However, we were able
to only generate structures with this angle’s values
varying from 111◦ to 115◦ depending on the force-
field we used (MMFF94 or UFF), optimization pre-
cision, and the algorithm (OpenBabel or Avogadro).
The second part of the molecule, whose geometry
seems to be important, was the N1 nitrogen and
atoms connected to it that are shown in Figs. 4
(c)-(d). Here, the nitrogen atom has rather planar
geometry, probably due to the vicinity of a sulfon-
amide group, while the structures that we generated
in Avogadro were more tetrahedral. What is in-
teresting, although OpenBabel uses the MMFF94
force-field for the ligand optimization, it produced
even more flat geometries. More precisely, the nor-
malized triple product of the bonds formed by N1
and its neighbors equals to -0.07 for the ligand gen-
erated in OpenBabel, while for the cases shown in
Fig. 4 these are equal to 0.24 and 0.52 for (c) and
(d), correspondingly. Making changes in these two
regions of the molecule lead to an improvement of
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the docking poses, as it can be seen in Figs. 4 (e)-(f)
and their relative scores compared to the results of
docking to 3oki and 3oof receptors. The latter poses
were highly scored but had conformations very dif-
ferent from the reference.

a)

b) c)

e) f)

d)

Figure 4: FXR 11 docking examples. Experimentally
obtained reference structure is shown in red, the lig-
and that we generated in Avogadro is shown in blue.
(a) 2D structure. (b) C26-C25-N13 valence angle of
the co-crystal structure. (c)-(d) Planar geometry of the
nitrogen atom. (e) The best-scored pose of docking of
the structure with corrected C26-C25-N13 angle. (f )
The best-scored pose of docking of the structure with
corrected C26-C25-N13 angle and corrected N1 atom
geometry.

Although this section emphasizes the importance
of the initial ligand structure, we should not for-
get about the significance of the correct receptors’
conformations. For example, the exp. 7 column of
Table 3 lists docking results of the co-crystal lig-
and structures to multiple receptor models. Here,
docking of the FXR 11 structure to 36 homologous
receptors found in RCSB database did not yield
any low-RMSD results.
Even though the 3gd2 receptor has a very simi-
lar conformation to the co-crystal structure of the
FXR 11 receptor, one of its residues is too close

to the co-crystal ligand structure, and thus we are
only able to obtain a pose with RMSD value of 2.84
Å, where a half of the ligand conformation is pre-
dicted correctly, while the rest is distorted to avoid
a clash. Docking with flexible side chains might be
a solution in this situation, however the large size
of the binding pocket entangles the choice of proper
flexible residues in the blind experiment.

While we were able to detect two specific regions
of the FXR 11 ligand that improve the docking re-
sults, we could not do the same for, for example, the
FXR 2 ligand, although it is smaller than FXR 11.
More precisely, the FXR 2 ligand has only three ro-
tatable bonds and aromatic rings that have rather
classical, or ”template”, geometry. Moreover, all
the structures that we generated with OpenBabel
and Avogadro had some differences in valence an-
gle values from the experimental structure, and the
fact that one of our structures improved the docking
results seems in some sense to be rather random.

Figure 5 shows a histogram representing differ-
ences of valence angle and bond length values be-
tween the 35 FXR structures that we generated us-
ing OpenBabel and the co-crystal structures. The
majority of angles and bond lengths optimized by
OpenBabel appear to be close to the co-crystal val-
ues. Indeed, as it can be computed from the train-
ing data of our Knodle method [39], the mean stan-
dard deviation of the value of the valence angle for
a given hybridization (sp2 or sp3, for example) is
about 5◦. The mean standard deviation of a bond
length between atoms of the same type is about
5 pm. Figure 5 shows that only a few differences
in angles and bond lengths between the modeled
and co-crystal structures exceed these values. In
particular, as it was already shown in Fig. 4 (b),
it happens for some angles formed by atoms con-
nected to aromatic rings, while the differences for
the aromatic rings themselves never exceed 5 Å or
5 pm. Considerable differences of terminal oxygens’
local geometry may occur either due to ambiguous
protonation states, or due to the inaccuracies in
structural alignment. Other atoms with highly di-
verging geometries include several sulfurs, oxygens
from ester and ether functional groups, and several
atoms belonging to non-aromatic cycles.
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Figure 5: Valence angle and bond length differences
between the ligands generated with OpenBabel and co-
crystal structures. Dashed lines at 5◦ and 5 pm provide
a visual indication of mean standard deviations of va-
lence angles and bond length values, correspondingly,
expected at the same hybridizations and bond orders.

Conclusion

Overall, the CG2 exercise provided us an excellent
opportunity to assess the performance of multiple
docking protocols on a set of ligands bound to the
FXR receptor, whose multiple structures in differ-
ent bound conformations can be found in the RCSB
database. For the initial submission we used the
closest receptor template from RCSB as measured
by the similarity of the bound ligand and obtained
the mean RMSD value of 2.96 Å.
Later on, we ran a series of additional computa-
tional experiments to evaluate the overall perfor-
mance of different protocols. These include self-
docking and docking of ligands that we used in the
submission, several ligands generated with another
algorithms, and co-crystal ligand structures to the
receptors used for the submission, proteins with
high sequence identity to the target apoprotein,
and experimentally obtained co-crystal apoprotein
structures.
We have discovered two major hurdles in the suc-
cessful predictions. Definitely, the major one is
finding the correct structure of the receptor. Its pre-
diction in the bound form remains a challenge for
molecular docking software developers and users.

For example, in case of a known receptor structure
we are able to predict the correct docking poses
within a mean RMSD of about 1.26 Å, which is
more than twice better than our submission results.
The wide binding pocket of the FXR apoprotein al-
lows, on the one hand, docking of ligands of differ-
ent sizes without any special procedures designed
to enlarge or open the pocket. On the other hand,
a scoring function may prefer selecting a smaller
ligand in a wrong place of the binding pocket, es-
pecially if it is the binding site for a similar ligand,
as we have seen in the example of the FXR 18 tar-
get. Applying a small number of binding site mu-
tations for the highly homologous proteins turned
out to be effective. Conversely, mutating of nearly
a half of the binding site for the low homologous
proteins worsens the docking results. The second
hurdle is the correct local geometry of the modeled
ligands. Indeed, AutoDock Vina, as well as many
other methods, can only sample torsion angles of
the ligand, preserving the local geometry such as
valence angles and bond lengths. We have shown in
the example of the FXR 11 target that even small
changes in the local geometry of the ligand may
considerably affect the docking results. However,
predicting the regions with important local geom-
etry seems to be a difficult task in a blind exper-
iment. Our results demonstrate that docking pro-
tocols with the correct structures of ligands allow
to obtain docking poses with better mean RMSD
values than other approaches. However, the choice
of a correct receptor still makes the major contri-
bution to the quality of the final docking results.
We should note that the importance of 3D ligand
structures is not a widely discussed topic in docking
literature, and in the current study we have tried
only two 3D ligand structure building algorithms.
A more thorough comparison of other methods on a
wider dataset will definitely provide useful results.
Overall, for docking of ligands of diverse chemical
series, we would suggest to rely on the docking
program and its scoring capabilities, and perform
docking of each ligand to a set of multiple receptors
that are homologous to the target. As it can be seen
from the low RMSD results of docking to the co-
crystal receptor structures, much success depends
on the structures of the chosen receptor models.
Therefore, since modeling conformational changes
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RMSD, Å

Table 3: Top-5 docking pose prediction results. The ’mod’ column represents ligands that were created in Avogadro
and minimized with either UFF or MMFF94 force-field. The ’old’ one represents ligands that we used for the submis-
sion. All the RMSD values are computed with RDKit. The following experiments are listed in the table: self docking –
docking of the co-crystal ligands to the co-crystal receptors; submission – results of the submission, where one ligand
was docked to a single receptor for each of the targets; exp. 1 – ”one ligand to one receptor”; exp. 2 – ”one ligand
to multiple receptors”; exp. 3 – ”multiple ligands to multiple receptors”; exp. 4 – ”one ligand to some receptors”; exp.
5 – ”one ligand to multiple+self receptors”; exp. 6 – ”one ligand to self receptor”; exp. 7 – ”self ligand to multiple
receptors”. Please see the main text for more details.
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of a receptor’s backbone and side-chains is still a
challenging problem, docking a single or multiple
ligands to multiple receptors seems to be the right
strategy. With such a protocol we came up with
RMSD values of 2.15 – 2.33 Å depending on the
chosen structures of the ligands without any visual
inspection of the input structures and the obtained
results.
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