Skip to main content
Log in

Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The 2016 D3R Grand Challenge 2 includes both pose and affinity or ranking predictions. This article is focused exclusively on affinity predictions submitted to the D3R challenge from a collaborative effort of the modeling and informatics group. Our submissions include ranking of 102 ligands covering 4 different chemotypes against the FXR ligand binding domain structure, and the relative binding affinity predictions of the two designated free energy subsets of 15 and 18 compounds. Using all the complex structures prepared in the same way allowed us to cover many types of workflows and compare their performances effectively. We evaluated typical workflows used in our daily structure-based design modeling support, which include docking scores, force field-based scores, QM/MM, MMGBSA, MD-MMGBSA, and MacroModel interaction energy estimations. The best performing methods for the two free energy subsets are discussed. Our results suggest that affinity ranking still remains very challenging; that the knowledge of more structural information does not necessarily yield more accurate predictions; and that visual inspection and human intervention are considerably important for ranking. Knowledge of the mode of action and protein flexibility along with visualization tools that depict polar and hydrophobic maps are very useful for visual inspection. QM/MM-based workflows were found to be powerful in affinity ranking and are encouraged to be applied more often. The standardized input and output enable systematic analysis and support methodology development and improvement for high level blinded predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nat Rev Drug Discov 3(11):935

    Article  CAS  Google Scholar 

  2. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47(7):1750

    Article  CAS  Google Scholar 

  3. Schneider G, Böhm H-J (2002) Drug Discov Today 7(1):64

    Article  CAS  Google Scholar 

  4. Hawkins PCD, Skillman AG, Nicholls A (2007) J Med Chem 50(1):74

    Article  CAS  Google Scholar 

  5. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK (2004) J Med Chem 47(7):1739

    Article  CAS  Google Scholar 

  6. Brown N, Jacoby E (2006) Mini Rev Med Chem 6(11):1217

    Article  CAS  Google Scholar 

  7. Mauser H, Guba W (2008) Curr Top Med Chem 11(3):365

    CAS  Google Scholar 

  8. Wang L, Deng Y, Wu Y, Kim B, LeBard DN, Wandschneider D, Beachy M, Friesner RA, Abel R (2016) J Chem Theory Comput 13(1):42

    Article  Google Scholar 

  9. Hu Y, Stumpfe D, Bajorath Jr (2017) J Med Chem 60(4):1238

    Article  CAS  Google Scholar 

  10. Jasial S, Hu Y, Bajorath J (2016) J Chem Inf Model 56(2):300

    Article  CAS  Google Scholar 

  11. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL (2015) J Chem Theory Comput 12(1):281

    Article  Google Scholar 

  12. Vanommeslaeghe K, Raman EP, MacKerell AD Jr (2012) J Chem Inf Model 52(12):3155

    Article  CAS  Google Scholar 

  13. Sherborne B, Shanmugasundaram V, Cheng AC, Christ CD, DesJarlais RL, Duca JS, Lewis RA, Loughney DA, Manas ES, McGaughey GB (2016) J Comp-Aided Mol Design 30(12):1139

    Article  CAS  Google Scholar 

  14. Hu Y, Sherborne B, Lee T-S, Case DA, York DM, Guo Z (2016) J Comp-Aided Mol Design 30(7):533

    Article  CAS  Google Scholar 

  15. Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Curr Opin Struct Biol 21(2):150

    Article  CAS  Google Scholar 

  16. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J (2015) J Am Chem Soc 137(7):2695

    Article  CAS  Google Scholar 

  17. Wan S, Knapp B, Wright DW, Deane CM, Coveney PV (2015) J Chem Theory Comput 11(7):3346

    Article  CAS  Google Scholar 

  18. Loeffler HH, Michel J, Woods C (2015) J Chem Inf Model 2485

  19. Gapsys V, Michielssens S, Seeliger D, de Groot BL (2015) J Comput Chem 36(5):348

    Article  CAS  Google Scholar 

  20. Homeyer N, Gohlke H (2013) J Comput Chem 34(11):965

    Article  CAS  Google Scholar 

  21. Lee T, Hu Y, Sherborne B, Guo Z, York DM (2017) J Chem Theory Comput 13(7):3077

    Article  CAS  Google Scholar 

  22. Crespo A, Rodriguez-Granillo A, Lim VT (2017) Curr Top Med Chem 17(23):2663

    Article  CAS  Google Scholar 

  23. Huang M, Giese TJ, York DM (2015) J Comput Chem 36(18):1370

    Article  Google Scholar 

  24. Giese TJ, Huang M, Chen H, York DM (2014) Acc Chem Res 47(9):2812

    Article  CAS  Google Scholar 

  25. Richter HGF, Benson GM, Blum D, Chaput E, Feng S, Gardes C, Grether U, Hartman P, Kuhn B, Martin RE (2011) Bioorg Med Chem Lett 21(1):191

    Article  CAS  Google Scholar 

  26. Richter HGF, Benson GM, Bleicher KH, Blum D, Chaput E, Clemann N, Feng S, Gardes C, Grether U, Hartman P (2011) Bioorg Med Chem Lett 21(4):1134

    Article  CAS  Google Scholar 

  27. Feng S, Yang M, Zhang Z, Wang Z, Hong D, Richter H, Benson GM, Bleicher K, Grether U, Martin RE (2009) Bioorg Med Chem Lett 19(9):2595

    Article  CAS  Google Scholar 

  28. Halgren TA (1999) J Comput Chem 20(7):720

    Article  CAS  Google Scholar 

  29. Schrödinger (2014) Release 2014-1: MacroModel. Schrödinger, LLC, New York

    Google Scholar 

  30. Fradera X, Verras A, Hu Y, Wang D, Wang H, Fells J, Armacost K, Crespo A, Sherborne B, Wang H, Peng Z, Gao Y-D (2017) J Comp-Aided Mol Design. doi:10.1007/s10822-017-0053-2

    Google Scholar 

  31. Molecular Operating Environment (MOE). Chemical Computing Group Inc., Sherbooke St. West, Suite #910. Montreal

  32. OpenEye Scientific Software, Inc. Fe Santa (2015) NM, http://www.eyesopen.com

  33. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267(3):727

    Article  CAS  Google Scholar 

  34. Wang R, Lai L, Wang S (2002) J Comp-Aided Mol Design 16(1):11

    Article  CAS  Google Scholar 

  35. Wang R, Lu Y, Wang S (2003) J Med Chem 46(12):2287

    Article  CAS  Google Scholar 

  36. Liu J, Wang R (2015) J Chem Inf Model 55(3):475

    Article  CAS  Google Scholar 

  37. Li Y, Liu Z, Li J, Han L, Liu J, Zhao Z, Wang R (2014) J Chem Inf Model 54(6):1700

    Article  CAS  Google Scholar 

  38. POSIT 3.1.0.5: OpenEye Scientific Software, Santa Fe, NM, http://www.eyesopen.com

  39. OMEGA 2.5.1.4: OpenEye Scientific Software, Santa Fe, NM, http://www.eyesopen.com. Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T.

  40. ROCS 3.2.1.4: OpenEye Scientific Software, Santa Fe, NM, http://www.eyesopen.com

  41. Schrödinger Release 2016-3: Jaguar, version 8.6, Schrödinger. LLC, New York, 2016

  42. Crespo A, Scherlis DA, Marti MA, Ordejon P, Roitberg AE, Estrin DA (2003) J Phys Chem B 107(49):13728

    Article  CAS  Google Scholar 

  43. Warshel A, Levitt M (1976) J Mol Biol 103(2):227

    Article  CAS  Google Scholar 

  44. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA, Honig B (1994) J Am Chem Soc 116(26):11875

    Article  CAS  Google Scholar 

  45. Marten B, Kim K, Cortis C, Friesner RA, Murphy RB, Ringnalda MN, Sitkoff D, Honig B (1996) J Phys Chem 100(28):11775

    Article  CAS  Google Scholar 

  46. Kojetin DJ, Burris TP (2013) Mol Pharmacol 83(1):1

    Article  CAS  Google Scholar 

  47. Nettles KW, Bruning JB, Gil G, O’Neill EE, Nowak J, Hughs A, Kim Y, DeSombre ER, Dilis R, Hanson RN (2007) EMBO Rep 8(6):563

    Article  CAS  Google Scholar 

  48. Jasial S, Hu Y, Bajorath Jr (2014.; 2016) Small-molecule drug discovery suite 2014-4: QSite, version 6.5, Schrödinger. LLC, New York

    Google Scholar 

  49. Murphy RB, Philipp DM, Friesner RA (2000) J Comput Chem 21(16):1442

    Article  CAS  Google Scholar 

  50. Philipp DM, Friesner RA (1999) J Comput Chem 20(14):1468

    Article  CAS  Google Scholar 

  51. Becke AD (1993) J Chem Phys 98(2):1372

    Article  CAS  Google Scholar 

  52. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98(7):5612

    Article  CAS  Google Scholar 

  53. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  54. Banks JL, Beard HS, Cao YX, Cho AE, Damm W, Farid R, Felts AK, Halgren TA, Mainz DT, Maple JR, Murphy R, Philipp DM, Repasky MP, Zhang LY, Berne BJ, Friesner RA, Gallicchio E, Levy RM (2005) J Comput Chem 26(16):1752

    Article  CAS  Google Scholar 

  55. Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA (2013) Int J Quantum Chem 113(18):2110

    Article  CAS  Google Scholar 

  56. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21(2):132

    Article  CAS  Google Scholar 

  57. Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23(16):1623

    Article  CAS  Google Scholar 

  58. Miller MD, Kearsley SK, Underwood DJ, Sheridan RP (1994) J Comp-Aided Mol Design 8(2):153

    Article  CAS  Google Scholar 

  59. Biggadike K, Bledsoe RK, Coe DM, Cooper TWJ, House D, Iannone MA, Macdonald SJF, Madauss KP, McLay IM, Shipley TJ (2009) Proc Natl Acad Sci USA 106(43):18114

    Article  CAS  Google Scholar 

  60. Luchko T, Gusarov S, Roe DR, Simmerling C, Case DA, Tuszynski J, Kovalenko A (2010) J Chem Theory Comput 6(3):607

    Article  CAS  Google Scholar 

  61. Kovalenko A, Hirata F (1999) J Chem Phys 110(20):10095

    Article  CAS  Google Scholar 

  62. Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) J Am Chem Soc 130(9):2817

    Article  CAS  Google Scholar 

  63. Young T, Abel R, Kim B, Berne BJ, Friesner RA (2007) Proc Natl Acad Sci USA 104(3):808

    Article  CAS  Google Scholar 

  64. Mi L-Z, Devarakonda S, Harp JM, Han Q, Pellicciari R, Willson TM, Khorasanizadeh S, Rastinejad F (2003) Mol Cell 11(4):1093

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following people for efforts, expertise and helpful discussions: Symon Gathiaka and Robert P. Sheridan. We are grateful to Merck & Co., Inc., Kenilworth, NJ USA Postdoctoral Research Fellows Program for financial support to Y. H. and the technical support from the High Performance Computing (HPC) group at Merck & Co., Inc., Kenilworth, NJ USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Duo Gao, Yuan Hu or Alejandro Crespo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 207 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YD., Hu, Y., Crespo, A. et al. Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort. J Comput Aided Mol Des 32, 129–142 (2018). https://doi.org/10.1007/s10822-017-0072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0072-z

Keywords

Navigation