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Abstract

We participated in Subchallenges 1 and 2 of the Drug Design Data Resource (D3R) Grand 

Challenge 3. To prepare our submissions, we performed molecular docking with UCSF DOCK 6 

and binding potential of mean force (BPMF) calculations — free energy calculations between 

flexible ligands and rigid receptors — using our open-source software package Alchemical Grid 

Dock (AlGDock). For each system, submissions were based on the minimum BPMF calculated for 

a selected set of crystal structures. In Subchallenge 1, our workflow performed poorly. Possible 

reasons for the poor performance include the neglect of cooperative ligands and limited sampling 

of ligand binding poses. In Subchallenge 2, our workflow led to some of most highly correlated 

submissions (Pearson R = 0.5) for vascular endothelial growth factor receptor 2. However, our 

results were poorly correlated for Janus Kinase 2 and Mitogen-activated protein kinase 14. 

Affinity prediction could potentially be improved by systematic selection of more diverse receptor 

configurations.
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1 Introduction

As is evidenced by the existence of and participation in the Drug Design Data Resource 

(D3R) grand challenges, methods for predicting noncovalent binding poses and free energies 

for protein-ligand complexes remain an important goal in computer-aided molecular design. 

The most common approach to these types of predictions are based on molecular docking, in 

which a search for low-energy binding poses is followed by evaluating the poses with a 

scoring function.

Based on the D3R 2018 workshop presentations and evaluation results [1], it appears that the 

most successful methods in the D3R Grand Challenge 3 incorporated prior knowledge about 

binding poses and/or affinities. These types of calculations, however, have important 

limitations. First, knowledge-based scoring functions depend on the availability of 
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applicable training data. Second, if scores are based on a single structure of a protein-ligand 

complex, they may not be able to realistically incorporate entropy. The lack of realistic 

entropy terms may impose an upper limit on their potential accuracy. Hence, the 

development of purely physics-based methods remains a worthy pursuit.

The majority of physics-based binding pose and affinity predictions in the D3R Grand 

Challenge 3 were based on molecular docking or the molecular mechanics/Poisson-

Boltzmann surface area (MM/PBSA) method [2,3]. The latter method is based on 

simulations of the complex and, sometimes, the isolated binding partners. Normal modes 

analysis is sometimes used to estimate entropy changes. Unfortunately, large-scale 

calculations have shown that binding free energies estimated by MM/PBSA have only weak 

correlation with experiment [4]. Moreover, the accuracy of MM/PBSA is known to be 

dependent on the system and sensitive to parameters [5].

A more accurate (e.g. [6]) but computationally expensive class of physics-based methods are 

alchemical binding free energy calculations [7]. In these calculations, a ligand is transmuted 

between different variants (for relative binding free energies) or between a bound and 

unbound state (for absolute binding free energies) through a series of non-physical, or 

alchemical, thermodynamic states. Performing simulations in all these thermodynamics 

states is computationally costly. Likely for this reason, very few submissions to the D3R 

Grand Challenge 3 were based on alchemical binding free energy calculations.

Implicit ligand theory (ILT) [8,9] is a framework that has the potential to enable faster and 

more scalable binding free energy calculations. According to ILT, the standard binding free 

energy may be expressed as an exponential average of the binding potential of mean force 

(BPMF) — the binding free energy between a flexible ligand and rigid receptor 

configuration. If receptor configurations represent the unbound ensemble, then BPMFs may 

be used to compute absolute binding free energies [8]. If configurations are obtained from a 

bound ensemble, then BPMFs can be used to compute binding free energies relative to the 

ligand that defines the ensemble [9]. ILT-based free energy calculations have the potential to 

be faster and more scalable because they are based on BPMFs. BPMFs are faster than free 

energy calculations with a fully flexible receptor because they require sampling of 

significantly fewer degrees of freedom and because receptor-ligand interactions can be 

precomputed on a three-dimensional grid and subsequently interpolated [10–12]. Grid 

interpolation also makes BPMF calculations highly scalable; once the grid is computed, 

interpolation operations are largely independent of the size of the receptor.

We have developed an open-source computer program, Alchemical Grid Dock (AlGDock) 

[13,14], to compute protein-ligand BPMFs. As in many other free energy calculations, 

AlGDock uses Hamiltonian replica exchange [15–17]. It also treats protein-ligand 

interactions by interpolating a precomputed three-dimensional grid [10–12] in most 

intermediate thermodynamic states. (We have also developed algorithms to estimate BPMFs 

based on the fast Fourier transform [18]).

Prior to our participation in the D3R Grand Challenge 3, we had taken steps towards but had 

not successfully applied fully rigorous ILT-based binding free estimation to complex ligands 

Xie and Minh Page 2

J Comput Aided Mol Des. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and binding sites. We have successfully applied AlGDock to estimating binding free 

energies between a small hydrophobic cavity in the T4 lysozyme L99A mutant and 141 

fragment-like organic molecules [19]. We have also computed BPMFs for the Astex Diverse 

Set, a curated subset of 85 protein-ligand complexes in the Protein Data Bank with 

pharmaceutical or agricultural relevance [20]. Some of these systems have complex ligands 

and binding cavities. BPMFs appeared to converge in a large fraction but not all of the 

systems. At this point, we still have not developed efficient methods for selecting 

appropriate receptor snapshots from molecular simulations or a set of crystal structures and 

properly weighting them to estimate binding free energies. Due to the combined factors of 

our incomplete methods development and the time limitations built into the challenge, we 

decided not to pursue rigorous binding free energy calculations based on multiple properly 

weighted BPMFs. Instead, we decided to assess how the minimum BPMF for multiple rigid 

receptor structures would fare in the blinded challenge.

With the available human and computational effort, we were able to complete and submit 

submissions to Subchallenge 1 and 2 of Grand Challenge 3. Subchallenge 1 consisted of 

pose and affinity prediction for ligands of Cathepsin S. Subchallenge 2 consisted of affinity 

prediction for ligands of vascular endothelial growth factor receptor 2 (VEGFR2), Janus 

Kinase 2 (JAK2), and Mitogen-activated protein kinase 14 (p38-α).

2 Methods

2.1 Structural Bioinformatics

For each protein, structures of highly homologous proteins available in the Protein Data 

Bank (PDB) were downloaded and analyzed. The observed binding poses in these structures 

were used to define the center and radius of a spherical binding site. Moreover, for 

Subchallenge 2 submissions, BPMFs were computed between each ligand and a subset of 

the downloaded structures.

MODELLER [21] 9.18 was used to identify protein sequences in the PDB with at least 90% 

homology to each template sequence. Template sequences for each receptor were UniProt 

[22] identifiers P25774 for Cathepsin S, P35968 for VEGFR2, O60674 for JAK2, Q16539 

for p38-α. The number of structures downloaded for each receptor were 29, 34, 34, and 225, 

respectively. The specific structures downloaded are given in the “Homologous Structures” 

subsection of the “Supplementary Methods“ section in Online Resource 1.

To facilitate the binding site definition and selection of a representative subset, the 

homologous structures were aligned to an arbitrary template structure. These templates were 

3IEJ (chain A) for Cathepsin S, 4ASE (chain A) for VEGFR2, 4IVA (chain A) for JAK2, 

and 3FMK (chain A) for p38-α. Each homologous structure was aligned to the template 

structure to minimize the root mean square deviation (RMSD) of α carbon atoms using 

ProDy [23] 1.8.2.

After the homologous structures were aligned, a spherical binding site was defined based on 

the observed ligand positions.
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In AlGDock and other alchemical binding free energy calculations [7], it is common to 

define the binding site based on the ligand center of mass. Even if individual ligand atoms 

protrude outside of the site, a ligand is considered bound if its center of mass is within the 

binding site. To define this site, we first calculated the center of mass of each 

crystallographic ligand. The binding site radius was defined by computing the largest 

distance between a ligand center-of-mass and the binding site center (dmax) and rounding up 

to the nearest Ångstrom.

For example, in Cathepsin S, because the maximum ligand COM distance from the site 

center was 2.45 Å, the site radius was calculated as 3.0 Å. The binding site radius for JAK2, 

VEGFR2, and p38-α were calculated as 3, 6, and 8 Å, respectively. Because the calculated 

sizes were small for Cathespin S and JAK2 (likely due to limited diversity in crystallized 

ligands), we manually expanded the radius to 6 Å.

We attempted to select representative crystal structures based on clustering, but because of 

an indexing error we ended up with an essentially random subset of snapshots. Hierarchical 

clustering with complete linkage was performed based on the RMSD between coordinates of 

backbone atoms within the binding site. The indices of residues that fit this criterion are 

given in the “Binding Site Residues” subsection of the “Supplementary Methods“ section in 

Online Resource 1. The calculations were performed using scipy.cluster from scipy [24] 

0.19.0.

2.2 System Preparation

Ligands were prepared using OpenEye Toolkits for Python, version 2.5.1.4. Starting from 

SMILES strings provided by D3R, ligand protonation states were assigned using the 

OEGetReasonableProtomer function in quacpac. Threedimensional conformations were 

generated using omega with 800 maximum conformers, an energy window of 15.0 kcal/mol, 

and minimum distance of 1.0 Å to distinguish conformers. Ligands were parameterized with 

the Generalized Amber Force Field [25] 2 in AmberTools 17 [26] and AM1BCC partial 

charges [27,28].

Protein protonation states were predicted with pdb2pqr 1.9.0 [29] at a pH of 7.0. They were 

parameterized with the AMBER ff14SB force field using AmberTools 17 [26]. In 

Subchallenge 1 Stage 1a and Subchallenge 2, the structures selected based on our attempted 

hierarchical clustering were prepared for docking and BPMF calculations. In Subchallenge 1 

Stage 1b, the provided crystallographic structures were prepared. Due to time limitations 

and because most of the Cathepsin S structures were very similar, only a single structure, 

WCGQ (chain A), was prepared for Subchallenge 1 Stage 2. Although SO4 and DMSO were 

present in some crystal structures for Subchallenge 1, we had no clear way to compare 

results between structures with and without these additional molecules. Therefore, they were 

removed from the structures and not considered.

2.3 Molecular Docking

Molecular docking was used to obtain preliminary binding poses and scores between each 

prepared receptor structure and ligands in the corresponding datasets. Docking was 

performed using UCSF DOCK 6.6 [30]. First, a molecular surface was generated with UCSF 
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Chimera 1.11 [31]. Next, docking spheres were generated using sphgen, a program within 

UCSF DOCK 6, with default parameters. A subset of spheres within a half AlGDock grid 

edge length (see definition below) of the binding site center were retained. A box was 

generated using showbox, a program within UCSF DOCK 6 that shows the size and location 

of grids.

The box length was equal to the sum of the maximum distance between any ligand atom to 

the binding site center and the binding site radius. Docking was performed using the anchor 

and grow algorithm. Parameters for showbox and docking are given in the “Molecular 

Docking Parameters” subsection in the “Supplementary Methods“ section of Online 

Resource 1.

2.4 BPMF estimation

BPMFs were estimated using the version of AlGDock posted on GitHub [14] on Sep 3, 

2017. The key algorithms behind AlGDock are described in a 2015 technical report [13]. In 

brief, BPMF calculations performed by AlGDock involve a thermodynamic cycle that can 

be divided into two stages: cooling and docking. In the former, the ligand is simulated by 

itself at different temperatures between the target temperature (300 K by default) and a high 

temperature (600 K by default). In the latter, the receptor-ligand interactions are gradually 

scaled in as the temperature is lowered from the high to target temperature.

The version of AlGDock used in this manuscript differs from that described in the technical 

report [13] in several important ways. As previously described [19], it automatically 

performs hydrogen mass repartitioning [32,33] and uses a power transformation during grid 

interpolation [12]. Furthermore, AlGDock now includes two options for treating solvation in 

intermediate thermodynamic states and an option to restrain ligands to a particular pose.

The two options for treating ligand solvation in intermediate thermodynamic states are Full 
and Desolvated:

1. In Full BPMF calculations, all thermodynamic states are bathed in generalized 

Born implicit solvent based on model 2 from Onufriev, Bashford, and Case 

(OBC) [34].

2. In Desolvated BPMF calculations, the OBC solvent around the ligand is 

sometimes scaled down and is not used in all thermodynamic states. For the 

unbound ligand at the target temperature, OBC is fully on. As the temperature of 

ligand increases, the strength of the implicit solvent is gradually scaled down to 

zero. Thermodynamic states used to sample the receptor-ligand complex do not 

include OBC solvent; the ligand is fully desolvated.

These options affect the sampling from thermodynamic states, but OBC solvent is still used 

for postprocessing in either case.

AlGDock also includes a new option for restraining a ligand to a particular binding pose. A 

harmonic restraint with a spring constant of 1000.0 kJ/(mol nm)−1 is imposed on the center 

of mass and 1000.0 kJ/(mol radian)−1 on three additional external degrees of freedom and a 

non-redundant set of flexible internal torsion angles. The restraint is scaled with a coefficient 
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of ar = tanh(16a2) as a function of a, which describes the progress of scaling the receptor-

ligand interaction grid. We will refer to a BPMF calculated with restraints as a pose-specific 
BPMF.

AlGDock requires precomputed receptor-ligand interaction energy grids. van der Waals 

grids were calculated with a spacing of 0.25 Å spanning dmax in each dimension surrounding 

the binding site center. Electrostatic grids were produced by solving the linear Poisson-

Boltzmann equation around the receptor molecule using the Adaptive Poisson-Boltzmann 

Solver, APBS [35] 1.4, with sequential focusing. Coarse grids were set to be at least 1.5 

times larger than the range of the receptor molecule in each dimension. Fine grids were set 

to have the same size as the van der Waals grids and a spacing of 0.5 Å. Boundary 

conditions were based on the multiple Debye-Huckel model for the coarse grids and coarse-

grid solutions for the fine grids. Both electrostatic grids were generated with the following 

parameters: chgm = spl4, swin = 0.3, pdie = 2.0, sdens = 10.0, sdie = 80.0, srad = 1.4, srfm = 

smol, and temp = 300.0.

At the beginning of cooling and docking, poses from UCSF DOCK 6 were minimized 

(without and with the receptor, respectively) to obtain an initial pose. The temperature was 

ramped from 20 K to the starting temperature in 30 stages of 1000 molecular dynamics 

steps. The thermalized pose was duplicated 50 times to generate a set of seeds for the initial 

thermodynamic state. Subsequent states were initialized using a thermodynamic speed of 

25.0 during cooling and 0.25 during docking and randomly selecting 50 seeds from the 

previous thermodynamic state. From each seed, systems are initialized by 1000 steps of 

molecular dynamics.

After initialization, replica exchange was conducted for 10 cycles of cooling and 17 cycles 

of docking. Each cycle consists of 150 iterations of Hamiltonian Monte Carlo [36], external 

translation and rotation moves (for docking), and replica exchange. Hamiltonian Monte 

Carlo moves consist of initializing velocities from the Maxwell-Boltzmann distribution, 50 

steps of velocity Verlet using a time step of 3.0 fs, and acceptance or rejection based on the 

Metropolis criterion.

Conformations of the unbound and fully bound states at the target temperature were 

postprocessed using the OBC model in NAMD [37] 2.10. BPMFs were estimated with a 

combination of statistical estimators as described [13].

2.5 Pose Prediction

Poses were predicted based on samples from the fully bound thermodynamic state. Ligand 

configurations from this state were clustered using hierarchical clustering from scipy [24] 

0.19.0 with complete linkage and a threshold of 0.1 Å. The medoid was used to represent 

each cluster. Each cluster was scored by the mean interaction energy within the cluster. The 

interaction energy was calculated using the OBC model in NAMD [37] 2.10.

2.6 Submissions

We prepared up to three submissions for each stage in Subchallenge 1 and in Subchallenge 

2. Two submissions, which we will refer to as the “Desolvated” and “Full” submissions, 
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were based on BPMFs calculated using the corresponding ligand solvation options. If 

submissions were based on multiple receptor structures, then the lowest BPMF was used for 

both pose and free energy predictions. The third submission, which we will refer to as 

“Combination”, was based on pose-specific Desolvated BPMFs for poses predicted by 

Desolvated and Full BPMFs. The pose-specific BPMF with lowest energy among all 

receptor structures and both solvation options was submitted.

Subchallenge 1 had three stages. In Stage 1a, BPMFs were calculated between 24 ligands 

and the five representative Cathepsin S structures. In Stage 1b, they were calculated between 

the ligand and the provided crystallographic structures for each receptor. In Stage 1, we only 

submitted pose predictions. In Stage 2, Desolvated BPMFs were calculated between 136 

ligands and one crystallographic structure. Poses from the given structures were not used. 

For six of the ligands, CatS 1, CatS 2, CatS 12, CatS 115, CatS 121, and CatS 122, no 

docking scores with the crystallographic structure were obtained. These ligands were labeled 

as “inact” in the submission. Because the lack of numerical values prevented their inclusion 

in correlation metrics, these submissions were considered to be partial sets on the D3R web 

page. For Stage 2, we only submitted binding affinity predictions based on Desolvated 

BPMFs. For Subchallenge 2, BPMFs were calculated between ligands and the representative 

crystal structures. We submitted three sets of binding affinity predictions based on the Full 

BPMFs, Desolvated BPMFs, and Combination.

3 Results and Discussion

3.1 Structural Bioinformatics

Existing PDB structures for the four receptors exhibit varying degrees of binding site 

variability (Figure 1). Most Cathepsin S binding sites are fairly similar, with RMSDs of 

about 0.6 Å or less from each other, but there is an outlier, 2FG9 (chain A), that differs from 

the others by a RMSD of up to 1.6 Å. VEGFR and JAK2 have similar levels of structural 

variability, in which several clusters of structures have RMSDs within about 0.5 Å. Most 

clusters within 0.8 Å of other cluster, but one cluster has an RMSD up to 1.2 Å from the 

others. p38-α is notable for a small group of structures with a very distinct binding site from 

the others.

Due to an indexing error, the selected structures did not always adequately represent the 

configuration space of publicly available structures. The selected structures for Subchallenge 

2 were: 1Y6B (chain A), 2P2H (chain A), 2QU5 (chain A), 3B8R (chain A), 3CPC (chain 

A), 4ASE (chain A) for VEGFR2; 2XA4 (chain A), 3IO7 (chain A), 3IOK (chain A), 

3ZMM (chain A) for JAK2; and 1ZYJ (chain A), 3P79 (chain A), 3QUE (chain A), 3S3I 

(chain A), 4LOQ (chain C) for p38-α. In Subchallenge 1 Stage 1a, three Cathepsin S 

structures were selected: 2FQ9 (chain A), 2FRA (chain A), 2FUD (chain A). Additionally, 

the two provided structures (one with DMSO and one with SO4) were also used for this 

stage. By luck, VEGFR2 structures appear to represent a diverse range of structures. 

However, for the other systems, large groups of known structures appear to be poorly 

represented. Unfortunately, the indexing error was not evident to us until after completion of 

the challenge.
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3.2 Subchallenge 1

The performance of our workflow in subchallenge 1 was poor. In Stage 1a, the mean and 

standard deviation of the RMSD for the closest submitted pose for 22 ligands was 11.72 and 

3.04 Å, respectively. The performance of pose prediction in Stage 1b was similar. For 

affinity rankings for 130 ligands in Stage 2 (receipt zfo0t), Kendall’s τ was −0.03 (0.06) and 

Spearman’s ρ was 0.03 (0.09), with the number in parentheses indicating the standard 

deviation of the correlation metric.

Several factors could have contributed to the poor results from our workflow. The most 

upstream factor may have been the neglect of DMSO and SO4 in the receptor structure. 

Although we understood that these molecules form critical contacts with the ligands (Table 

1), we did not have a procedure to compare results with and without these additional 

molecules. In the future, it should be possible to develop a binding theory that incorporates 

cooperativity between ligands and allows us to predict which will bind. Another 

confounding factor was limited ligand binding pose sampling. In Stage 1b, we only started 

with a near-native pose, with a RMSD of 3 Å or less from the crystal structure, among the 

top five DOCK 6 poses in 3 of 24 systems (Table 2). A pose between 3 and 6 Å was sampled 

but not among the top five for three other systems, CatS 20, CatS 8, and CatS 21. BPMF 

calculations did not enhance sampling of near-native poses and our submitted poses had an 

RMSD within 3 and 5 Å for only two (CatS 23 and CatS 17) and four (CatS 23, CatS 17, 

CatS 15, CatS 20) systems, respectively.

These two factors — cooperative ligands and pose sampling — are related, as the neglect of 

DMSO and SO4 likely contributed to the limited sampling and poor scores of near-native 

poses. Even in three of the systems where a near-native binding pose was sampled (CatS 23, 

CatS 17, and CatS 20), the crystal structure shows a SO4 within 3 Å from a ligand atom 

(Table 1). (The crystal structure for the fourth ligand, Cat 15, has no cosolvent in the ligand 

binding site.) The scores for these near-native poses could have been improved by inclusion 

of cosolvent in the model. We also could have selected molecular docking parameters to 

search ligand binding poses more thoroughly. In retrospect, the failure to find any suitable 

binding poses for some ligands with known affinity should have been a red flag indicating 

that a more exhaustive search was necessary. Finally, the use of only a single receptor 

structure may have affected the accuracy of Stage 2. However, because most the provided 

crystal structures had very similar binding site configurations, this was unlikely to be a 

major issue.

3.3 Subchallenge 2

For Subchallenge 2, our VEGFR2 results were among the most highly correlated 

submissions to the D3R. Our entry based on Desolvated BPMFs had the fourth best 

Kendall’s τ and Spearman’s ρ among 33 entries. Indeed, both the Kendall’s τ of 0.37 (0.09) 

and Spearman’s ρ of 0.52 (0.12) were within error bars of the entry with the highest 

correlation metrics; the best entry had a Kendall’s τ of 0.43 (0.09) and Spearman’s ρ of 0.61 

(0.11). The performance of Full BPMFs was slightly worse (Table 3). If the minimum 

BPMF from Desolvated and Full BPMFs was used (this was not submitted), then correlation 

metrics were comparable.
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Comparison with simpler affinity estimates suggests that consideration of entropy is an 

important factor in the strong performance of these entries. In particular, the performance of 

BPMFs was superior to the performance of mean interaction energies computed with the 

same force field and minimum interaction energies from the DOCK 6 grid score (Table 3). 

Neither of these calculations considers the loss of ligand entropy upon binding.

The poor performance of pose-specific BPMFs (“Combination” in Table 3) in VEGFR2 

affinity prediction has several possible explanations. One explanation is that the top-scoring 

pose was not correctly identified or that multiple poses are necessary. The relatively 

reasonable performance of DOCK 6 scores is evidence against the latter option. Another 

possibility is that the harmonic restraint used to position the ligand was too strong, 

eliminating much of the residual entropy.

It is worth noting that all affinity rankings with comparably successful metrics were at least 

partly knowledge-based. Maxim Totrov’s group used ICM [38] with atomic property fields 

[39], which are three-dimensional potential energy terms specific to a particular receptor. 

Alexandre Bonvin used an VEGFR-specific prediction based on ligand similarity. Xiaoqin 

Zou’s group used a new version of ITScore [40], which is based on statistical potentials. As 

discussed in his presentation, Guo-wei Wei’s group used a potential based on machine 

learning. Finally, Carlos Camacho’s group used smina [41], which uses an empirical scoring 

function. In contrast, the only system-specific information that we used in our structure-

based method (we incorrectly labeled entries 0gmqd and 4qmwz as ligand-based) was the 

size of the binding site. The performance of our method suggests that in ideal cases, physics-

based scoring can be competitive with knowledge-based approaches.

While our workflow worked well for VEGFR2, it was much less successful for JAK2 and 

p38-α. For these receptors, correlation metrics were weak and often even negative (Table 3). 

For many ligands, even the lowest BPMF among JAK2 structures was positive (Figure 2). 

Although most of the lowest BPMFs for p38-α ligands were negative, they were generally 

not as low as with VEGFR2. The most likely reason for these failures was the limited 

selection of receptor structures. For all of the receptors, a variety of structures led to the 

lowest BPMF; it was not the case that a single receptor structure bound all the ligands 

tightly. Thus, if a more diverse pool of receptor structures were selected, it is likely that at 

least one of them would bind tightly to a larger range of ligands.

4 Conclusions

While our overall performance in D3R Grand Challenge 3 was not particularly impressive, 

we were able to derive a number of lessons that could improve our methodology and our 

performance in future challenges. From Subchallege 1, we learned that co-crystallizing 

ligands, especially if they are adjacent to the binding site, should be carefully considered. 

From Subchallenge 2, the importance of selecting receptor configurations that can bind a 

diverse set of ligands was evident. In the VEGFR2 dataset, where a representative set of 

structures was selected, our BPMF-based entries were among the best and competitive with 

knowledge-based approaches.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Analysis of homologous structures in the PDB.
Hierarchical clustering dendrograms (top) and binding site RMSD matrices (bottom) for (a) 

VEGFR2, (b) JAK2, (c) p38-α, and (d) Cathepsin S. Selected structures are labeled on the 

left of the RMSD matrices. Except for the SO4 and DMSO labels for Cathepsin S, which 

denote the provided structures in complex with the respective ligands, the labels are PDB 

identifiers.
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Fig. 2. 
Comparison of Desolvated BPMFs and experimental affinities for VEGFR (top), JAK2 

(middle), and p38-α (bottom), excluding Kd’s > 10 μM. Marker shapes and color indicate 

the PDB identifier for the receptor structure with the lowest BPMF.
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Table 1

Minimum distances between cosolvent and ligand atoms, based on the 24 Cathepsin S crystallographic 

structures released by D3R.

PDB ID in D3R database chain ID cosolvent ligand atom id cosolvent atom id distance (Å)

tjyg-CatS 2

A SO4 F41 O1 5.1909

B SO4 F41 O2 5.6770

C SO4 F41 O3 5.5994

yquj-CatS 17
A SO4 N80 O3 2.8678

B SO4 N80 O4 3.0679

uavh-CatS 20 A SO4 C98 O1 2.9816

pbwz-CatS 22
A SO4 N83 O1 2.5988

B SO4 N83 O4 2.6058

jjod-CatS 23

A SO4 N87 O4 2.7566

B SO4 N87 O3 2.8651

C SO4 N87 O1 2.7855

D SO4 N87 O1 2.7641

yqqd-CatS 24 A SO4 N85 O2 2.5900

gabj-CatS 14 B DMSO F46 O 3.3607
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Table 2
Cathepsin S Pose Prediction Metrics for Stage 1b.

The RMSD and score for poses from molecular docking (DOCK 6) and Desolvated BPMF calculations 

(AlGDock). Scores are the grid score for DOCK 6 and mean interaction energy within the cluster for 

AlGDock. They are in units of kcal/mol.

Ligand ID
pose AlGDock DOCK 6

# RMSD (Å) score RMSD (Å) Score

CatS 23

1 5.75 −262.79 12.54 −43.41

2 13.73 −259.32 2.59 −42.16

3 3.41 −256.04 11.47 −40.79

4 1.80 −255.51 9.78 −39.71

5 12.47 −254.91 11.93 −39.63

CatS 17

1 6.80 −157.92 14.26 −42.17

2 14.73 −157.91 3.81 −41.15

3 2.21 −123.97 3.07 −40.59

4 1.91 −122.50 2.74 −40.22

5 14.28 −121.10 2.23 −39.76

CatS 15

1 12.15 −38.38 1.80 −37.65

2 12.31 −34.72 9.18 −37.55

3 13.59 −32.92 10.93 −36.36

4 3.17 −32.87 10.30 −35.99

5 10.54 −31.88 9.95 −35.68

CatS 20

1 9.18 −168.10 14.33 −34.54

2 15.88 −154.47 7.38 −34.01

3 9.52 −150.43 7.10 −33.90

4 8.42 −144.01 15.34 −33.71

5 4.29 −142.85 6.22 −33.68

most native pose 9 – – 3.36 −31.74

CatS 8

1 11.32 −38.00 11.14 −38.72

2 5.35 −28.04 11.31 −38.29

3 12.48 −24.72 11.26 −37.95

4 10.50 −21.67 11.12 −37.81

5 12.24 −18.98 10.70 −37.70

most native pose 24 – – 5.57 −33.74

CatS 21

1 11.32 −40.55 10.62 −40.10

2 11.39 −36.92 11.33 −35.93

3 10.44 −10.09 12.81 −35.63

4 10.24 −9.40 12.91 −34.30

5 9.75 −8.28 10.09 −33.95

most native pose 29 – – 4.01 −29.69
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Table 3
Affinity ranking metrics for Subchallenge 2.

In addition to our submissions to the grand challenge, metrics for other scores are included for comparison: the 

minimum of Desolvated and Full BPMFs (Minimum), the mean OBC interaction energy observed in BPMF 

calculations (mean Ψ), and grid scores from UCSF DOCK 6 (DOCK 6).

Receptor Method Score Type Spearman’s ρ Kendall’s τ Pearson’s R Entry ID

VEGFR2

BPMF

Desolvated 0.52(0.12) 0.37(0.09) 0.48(0.11) 0gmqd

Full 0.42(0.14) 0.3(0.10) 0.49(0.13) 4qmwz

Minimum 0.46(0.11) 0.31(0.09) 0.52(0.12) –

pBPMF Combination −0.08(0.15) −0.06(0.10) −0.12(0.13) umw4e

Mean Ψ Desolvated 0.35(0.14) 0.22(0.10) 0.31(0.12) –

DOCK 6 – 0.43(0.14) 0.30(0.10) 0.41(0.12) –

JAK2

BPMF

Desolvated 0.11(0.16 0.07(0.11) 0.11(0.14) 24ob4

Full −0.09(0.20) −0.04(0.11) 0.06(0.21) Jxdme

Minimum −0.00(0.20) 0.01(0.15) 0.08(0.20) –

pBPMF Combination −0.17(0.18) −0.13(0.13) −0.23(0.19) zkt5d

Mean Ψ Desolvated −0.00(0.17) .01(0.11) 0.08(0.13) –

DOCK 6 – 0.04(0.19) 0.02(0.14) 0.04(0.19) –

p38-α

BPMF

Desolvated −0.18(0.19) −0.12(0.14) −0.24(0.18) 0nqfo

Full −0.25(0.18) −0.16(0.13) −0.26(0.15) dzz7p

Minimum −0.23(0.19) −0.15(0.15) −0.27(0.15) –

pBPMF Combination −0.09(0.19) −0.05(0.13) −0.04 (0.20) 8h4d2

Mean Ψ Desolvated 0.01(0.19) 0.02(0.13) −0.07(0.15) –

DOCK 6 – −0.39(0.15) −0.24(0.11) −0.33(0.15) –
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