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ABSTRACT 

During the last few years, we have developed a docking protocol involving two steps: i) the 

choice of the most appropriate docking software and parameters for the system of interest using 

structural and functional information available in public databases (PDB, ChEMBL, PubChem 

Assay, BindingDB, etc.); ii) the docking of ligand dataset to provide a prediction for the binding 

modes and ranking of ligands. We applied this protocol to the D3R Grand Challenge 3 dataset 

containing cathepsin S (CatS) inhibitors. Considering the size and conformational flexibility of 

ligands, the docking calculations afforded reasonable overall pose predictions, which are 

however dependent on the specific nature of each ligand. As expected, the correct ranking of 

docking poses is still challenging. Post-processing of docking poses with molecular dynamics 

simulations in explicit solvent provided a significantly better prediction, whereas free energy 

calculations on a subset of compounds brought no significant improvement in the ranking 

prediction compared with the direct ranking obtained from the scoring function. 

 

INTRODUCTION 

Drug Design Data Resource (D3R, https://drugdesigndata.org/) organizes, on a regular basis, 

blinded prediction challenges with the aim to evaluate the performance of tools and protocols 

that are used in real-life computer-aided drug discovery projects. To achieve this, datasets 

presenting different levels of difficulty are presented to the community, which is asked to 

predict, in “blind” conditions, the binding modes and the relative affinities of compounds. 

The D3R Grand Challenge 3, which was held in 2017, was focused on a single protein, 

cathepsin S (CatS, Figure 1), a target with multiple potential applications that has received much 

attention during the recent years [1-5]. 
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Figure 1. Solid surface representation of a representative crystal structure of cathepsin S (PDB 

code 3IEJ) with the ligand 599 in stick representation. The binding site, as defined for our 

docking studies, is colored in yellow, and the ligand is colored in cyan. 

In Phase 1A the participants were asked to predict the crystallographic poses of 24 CatS 

ligands, the affinity ranking for 136 CatS ligands and the relative binding affinities for a 

designated free energy subset of 33 compounds. In phase 1B, the organizers released the 

corresponding receptor structures for the 24 CatS ligands, and asked to predict the 

crystallographic poses using the released receptor structures. In Phase 2 the participants were 

required to provide the same affinity predictions for the subset of 136 ligands and relative free 
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energy for the subset of 33 compounds as in Phase 1, but taking into account the additional 

structural data (24 new protein-ligand complexes) released at the end of Phase 1B. The CatS 

dataset containing the 136 ligands used for ranking prediction can be found in the Electronic 

Supplementary Material (Figure S3). 

Figure 2 shows the chemical structures of the 24 compounds from CatS dataset for which the 

pose predictions were required. Additionally, the participants were asked to predict the relative 

affinities for one homogeneous subset of compounds that is suited for free energy calculations. 

The structures of the 33 CatS inhibitors included in the free energy subset are presented in Figure 

3. 
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Figure 2. Chemical structures of the 24 CatS ligands included in Phase 1 for pose prediction. 
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Figure 3. Chemical structures of the 33 CatS ligands included in the free energy set. 
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Figure 3. Chemical structures of the 33 CatS ligands included in the free energy set (continued). 

 

METHODS 

Protein structures. We found 38 crystal structures of CatS available in the Protein Data Bank 

(PDB) [6] from which 31 were human CatS and 7 were mouse CatS (see Table S1 in the 

Electronic Supplementary Material for the complete list). These structures were superposed, 

showing no conformational variability for the backbone and for most sidechains. The only 

exceptions were the sidechains of residues Lys64, Arg141 and Asn161, which are very flexible, 

adopting multiple conformations, and of residues Phe146 and Phe211, which adopt two major 
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orientations each. The residues Lys64 and Arg141 are relatively far from the binding site and 

therefore their flexibility was not taken into account for the docking process. In these conditions, 

we generated four representative conformations of CatS (named CatS_conf1 to CatS_conf4) 

starting from the structure 1GLO (apo) and adjusting the orientations of Phe146 and Phe211. 

These conformers, with the ions and solvent molecules manually removed, were superimposed 

on the reference structure CatS (containing the SO4 ion) provided by the D3R Grand Challenge 

3 organizers, in order to conserve the same coordinate system through the whole process. 

Hydrogen atoms were added using Hermes, the graphical interface of Gold v5.2.2 software [7], 

or with Maestro, the graphical interface of Schrödinger software (http://www.schrodinger.com), 

prior to docking. 

Ligands. A training set of CatS ligands was constituted by gathering from ChEMBL, PubChem 

Assay and BindingDB databases the compounds with known activity (IC50) for CatS (1591 

unique compounds). The structures of these compounds were retrieved in SMILES format and 

were converted into three-dimensional MOL2 files using Ligprep v37014  (Schrödinger, 

http://www.schrodinger.com). The same conversion from SMILES into MOL2 formats was 

applied to the D3RGC3 dataset of CatS inhibitors provided by organizers. In all cases, the 

protonation state for the compounds was adjusted at physiological pH using LigPrep 

(Schrödinger, http://www.schrodinger.com). 

Preliminary docking. In the preliminary analysis step, several docking software and scoring 

functions have been tested for their ability to predict relative affinity ranking and reproduce the 

protein-ligand complexes: Gold [7] with the GoldScore, ChemScore, ChemPLP and ASP scoring 

functions, Vina [8] and Glide (Schrödinger, http://www.schrodinger.com). Default parameters 

were used in all cases for docking, except with Gold, where a search efficiency of 200% was 
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used in order to better explore the conformational space. For Glide, the standard precision (SP) 

mode was used. The binding sites were considered with Gold as spheres with a 20 Å radius 

around a virtual point with coordinates (-7,12,-8). With Vina, the binding sites were defined as a 

25 x 25 x 25 Å3 cube centered on the same virtual point. With Glide, the binding site was defined 

with a inner box of 13 x 12 x 13 Å3 and an outer box of 30 x 29 x 30 Å3. Glide attempts to 

position the ligand center within the inner box volume, while the outer box is defined to contain 

all the ligand atoms. The docking calculations were carried out with the four CatS conformers 

described above and with the two structures (containing a DMSO molecule and a SO4 ion, 

respectively) provided by the organizers. All structures were rigid during the docking process. 

Ten docking poses were generated for each ligand from the training set and from the CatS 

D3RGC3 dataset. 

Phase 1A docking. From the preliminary analysis, Gold with the ASP scoring function were 

identified as the most adapted for the given system, and therefore were used for Phase 1 

predictions. The conformation CatS_conf4 gave the best results in the preliminary docking step 

(data not shown) and was used for the docking of most compounds from the CatS D3RGC3 

dataset. Notable exceptions are: i) for compounds CatS_4 and CatS_6, which contain a different 

scaffold, the structure 3MPF was used; ii) for compound CatS_14, the structure provided by 

organizers containing the DMSO molecule was used; iii) for compounds CatS_2, CatS_17, 

CatS_20, CatS_22, CatS_23 and CatS_24, the structure provided by organizers containing the 

SO4 ion was used. The two flip/flop forms of the amide side chain from Asn161 were 

considered, and then best pose (in terms of score or RMSD) selected. The same Gold docking 

parameters as described above were used, except that 100 docking poses were generated for each 

ligand. In the post-docking processing procedure, docking complexes were used as input 
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structures for 10 ns molecular dynamics simulations in explicit solvent using Gromacs and 

AMBER 99SB force field. During the simulation, constraints were applied on the protein 

backbone and on the ligand core fragment that was also constrained during docking. The first 1ns 

was discarded and the remaining snapshots clusterized (using the g_cluster tool available in 

Gromacs) in order to provide a single cluster. The representative structure of this cluster was 

selected for submission (1 structure per compound). 

Phase 1B docking. After the release of the 24 crystal structures corresponding to the 

compounds CatS_1 to CatS_24 (but without the coordinates of the ligands), we carried out 

docking calculations for each of these structures with its native ligand using the same conditions 

as in Phase 1A (Gold with the ASP scoring function, 100 docking poses generated for each 

ligand). 

Phase 2 docking. Our experience from Phase 1A using Gold/ASP with scaffold match 

constraints showed that the atoms with constraints applied were not always well aligned with the 

reference structure, even when very strong constraints are used (increase of the weight 

parameter, that determines how closely ligand atoms fit onto the scaffold, up to 2000). Therefore, 

in Phase 2 we used the Glide/SP protocol described above, with the exception of scaffold 

constraints that were applied on the common substructure of ligands with either CatS_15, 

CatS_20 or CatS_24. The best Glide/SP docking scores were selected for Phase 2 ranking 

prediction submission (1 per compound). The related docking poses for the 33 CatS compounds 

from the free energy dataset were used as the starting points for following free energy 

calculations. 
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Free energy calculations. The complexes selected in the previous step represented the input for 

relative alchemical free energies calculations, using the protocol described in a previous study 

[9]. Hybrid structures and topologies were built using a modified version of the MOL2FF 

package developed in our team. CatS_67 was used as reference structure for the free energy 

calculations. Briefly, equilibrium 10 ns MD simulations were performed for the two states 

(corresponding to lambda 0 and 1), using Gromacs [10] and OPLS-AA force field [11,12]. 

Snapshots from the equilibrium runs were extracted to spawn 100 simulations of 50 ps each to 

alchemically morph between the two states of the system. The work values over every non-

equilibrium transition were extracted using some scripts from the PMX software [13-15] in order 

to estimate the free energy differences relying on the Crooks Fluctuation Theorem and utilizing 

Crooks-Gaussian Intersection as estimator. As described previously [9], when the two ligands 

considered for the alchemical transformation had the same charge, separate calculations in 

explicit solvent were carried out for the transformation of the protein-ligand complex and of the 

ligand alone. The relative free energy of binding is then calculated as the difference between the 

corresponding work for these two transformations. When the two ligands had different charges, a 

single box containing the protein-ligand complex and the ligand alone, separated by 30 Å, was 

used. The ligand from the complex was converted in one direction, whereas the ligand alone was 

converted simultaneously in the opposite direction. Thus, the overall charge of the system is 

conserved during the whole simulation, and the global work for this system represents the 

relative free energy of binding between ligands. 

Submission preparation. Protein structures were converted into PDB format for submission 

using UCSF Chimera [16], and the docking poses were converted into MOL format using 
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CORINA v3.60 (http://www.molecular-networks.com/), as the MOL format corresponds to the 

SDF output format in CORINA. 

Graphics. Chemical structures were depicted using CACTVS Chemoinformatics Toolkit 

v3.409 (Xemistry, http://www.xemistry.com/), images for protein structures were generated 

using PyMol 1.8.1 (Schrödinger, http://www.pymol.org/). 

Statistics. Statistics were computed using the R-package (http://www.r-project.org). 

Chemoinformatics. Tanimoto similarities were computed using Canvas (Schrödinger). 

 

RESULTS AND DISCUSSION 

During the last years we developed a protocol for docking and virtual screening that proved to be 

relatively successful in our participation to different blind prediction challenges: SAMPL3 

(2011) [17], SAMPL4 (2013) [18], CSAR (2014) [19], D3R Grand Challenge (2015) [20] and 

D3R Grand Challenge 2 (2016) [9]. This protocol involves two steps, the first one representing a 

preliminary analysis of publicly available structural and biochemical data in order to identify the 

most appropriate docking software and scoring function for the system of interest. In the second 

step, we use these parameters for the prediction of binding modes (pose prediction) and of 

relative affinities of ligands (scoring). Enhanced genetic algorithm parameters for docking (a 

search efficiency of 200%) proved to be beneficial in our previous studies [17-20,9], especially 

for big and flexible ligands. Therefore, the same parameters were used in this work to explore as 

exhaustively as possible the docking conformations of ligands from the CatS D3RGC3 dataset. 

Preliminary analysis 
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The superposition of the 38 crystal structures of CatS identified in the PDB (Table S1) showed 

very little conformational variability on backbone and on most side chains, with the exception of 

a few residues shown in Figure 4. Among these structures, 19 contain a ligand in the active site, 

and 4 of these ligands (599, 23Z, N2A and N2D from the structures 3IEJ, 3KWN, 3MPE and 

3MPF, respectively) share a common scaffold with some compounds from the CatS D3RGC3 

dataset. The three-dimensional structure of protein in these structures is well conserved, with the 

exception of two side chains of Phe211 and Phe146 that adopted alternative orientations, as 

found in 3 representative structures (PDB codes 2F1G, 3N4C, 3MPF). Therefore, we used an apo 

structure of CatS (PDB code 1GLO) to build 4 conformers, representing the four combinations 

of representative conformations for Phe211 and Phe146 side chains. In addition, 2 structures 

(containing a DMSO molecule and a SO4 ion) were provided by the D3RGC3 organizers to take 

into account specific ligand-DMSO or ligand-SO4 interactions. These six structures were used in 

the preliminary docking calculations. 
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Figure 4. All 38 CatS structures available in the PDB superimposed (cartoon representation). 

Flexible residues are shown as sticks. 

A training set containing 1591 unique CatS ligands (known IC50) was created with data from 

ChEMBL, PubChem Assay and BindingDB databases and used to assess the performance of 
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different docking software in terms of pose prediction and relative ranking of docking poses: 

Gold with the GoldScore, ChemScore, ChemPLP and ASP scoring functions, Vina and Glide. 

The analysis of the docking results showed that no docking program was able to provide a 

good prediction for the relative affinity ranking. The Spearman’s and Kendall’s correlation 

coefficients between docking scores and pIC50 values of ligands from the training set are 

reported in Table S2. 

Surprisingly, the Spearman’s and Kendall’s correlation coefficients (Table S2) seem to 

indicate in some cases an anti-correlation between docking scores and pIC50. Indeed, the scatter 

plot Score versus pIC50 (Figure S2) seems to indicate the existence of two clusters of 

compounds (two distinct clouds of points). To investigate this observation, we calculated the 

distance matrix between the compounds from the training set, based on the molprint 2D 

descriptor, the Tanimoto distance (Canvas, Schrödinger), and a hierarchical cluster analysis (R). 

These results highlighted the existence of a large cluster of compounds (colored in blue) that 

tend to have favorable docking scores despite low to moderate pIC50 (Figures S1 and S2, 

red/blue dendrogram and scatterplot). This blue cluster can explain in part some anti-correlations 

observed between the docking scores and pIC50 values (Table S2). Further calculation of 

Tanimoto distances between the compounds from the CatS D3RGC3 and the training set 

identified 292 compounds with a Tanimoto score >0.5 compared with at least one of the 141 

CatS D3RGC3 compounds, and all these compounds belong to the blue cluster (Figures S1 and 

S2). The Spearman’s and Kendall’s correlation coefficients for the 292 compounds from the blue 

cluster (Table S2) show that Vina provided the best results, with correlation coefficients between 

0.29 and 0.47 (Spearman’s) and between 0.21 and 0.34 (Kendall’s), depending on the CatS 
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conformation used for docking. Other docking programs and scoring functions did not provide 

good correlations for the 292 compounds from the blue cluster.  

The ability of the docking programs to reproduce crystallographic poses was also evaluated. 

The 141 compounds from the D3RGC3 CatS dataset were docked on the four representative 

CatS conformations using different docking software and scoring function combinations and the 

RMSD were calculated between the common substructure of these compounds with the ligand 

599 from the structure 3IEJ (Figure 5). The mean RMSD values for the 141 compounds from the 

D3RGC3 CatS dataset are reported in the Table 1, showing that Gold with the ASP scoring 

function clearly outperformed the other docking programs and scoring functions for all the 4 

CatS conformers, with mean RMSD values between 2 and 3 Å. In these conditions, Gold with 

the ASP scoring function and the CatS_conf4 structure were selected for the next step. 
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Figure 5. a) Ligand 599 in the active site of cathepsin S (crystal structure, PDB code 3IEJ); b) 

Chemical structure of ligand 599. The common substructure of this ligand with the compounds 

from CatS D3RGC3 dataset is represented in sticks (a) and colored in blue (b). 

 

Table 1. Analysis of preliminary docking poses for the 141 compounds from the CatS dataset 

using four representative conformations of CatS. For all 10 docking poses of each ligand, RMSD 

values (Å) were calculated using the common substructure between the ligand and compound 

599 (see Figure 5). The best RMSD value for each ligand was retained and the overall mean 

values are shown below. 

 CatS_conf1 CatS_conf2 CatS_conf3 CatS_conf4 

Gold/Goldscore 4.32 4.72 5.09 4.07 

Gold/Chemscore 3.40 3.54 3.46 3.36 

Gold/ASP 2.52 2.69 2.91 2.59 

Gold/ChemPLP 3.55 4.00 3.98 3.56 

Glide/SP 3.19 4.86 4.64 3.40 

Vina 3.18 5.78 5.63 3.37 

 

Pose prediction and scoring (Phase 1A) 

The 141 CatS ligands were docked with Gold and the ASP scoring function, generating 100 

poses for each ligand. The CatS_conf4 conformer was used for docking the vast majority of 

compounds, with some exceptions (see the Methods section for details). 

 Three versions of the protocol were tested: i) one without any constraints; ii) one with 

constraints on the common substructure between the ligand and one of PDB ligands 599, 23Z 

and N2A and iii) one with the same constraints as above, followed by a 10 ns molecular 
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dynamics simulation in explicit solvent. The details of all submissions are presented in Table 2. 

The “best RMSD” submission without constraints (entry 3) and the “best score” submission with 

constraints (entry 5) provided similar performances (RMSD of 4.36 Å and 4.34 Å, respectively). 

The post-processing of docking poses with molecular dynamics (MD) simulations (entry 7) 

clearly improved the quality of the prediction (RMSD of 2.96 Å). Thus, it seems that such MD 

simulations are beneficial for a better positioning of flexible substituents. 

 

Table 2. Overview of all predictions submitted and their performance (see the Electronic 

Supplementary Material for the plots corresponding to these results). 

Entry 
Docking 

protocol 

Pose 

selection 
Stage 

Prediction 

type 

Submission 

code 

Number of 

predictions 

submitted 

Mean 

RMSD 

(Å) 

Spearman 

correlation 

Kendall 

correlation 

1 

Gold/ASP 

no 

constraints 

Best score 1A 
pose 

prediction 
gior3 24 5.19 – – 

2 

Gold/ASP 

no 

constraints 

Best score 1A ranking dhr26 136 – 0.39±0.08 0.28±0.06 

3 

Gold/ASP 

no 

constraints 

Best 

RMSD 
1A 

pose 

prediction 
tjwks 24 4.36 – – 

4 

Gold/ASP 

no 

constraints 

Best 

RMSD 
1A ranking v3c55 136 – 0.34±0.08 0.24±0.06 

5 

Gold/ASP 

scaffold 

match 

constraint 

Best score 1A 
pose 

prediction 
5pmnj 24 4.34 – – 

6 

Gold/ASP 

scaffold 

match 

constraint 

Best score 1A ranking jg6d4 136 – 0.43±0.08 0.29±0.05 

7 

Gold/ASP 

scaffold 

match 

constraint 

MD 

(Gromacs, 

Amber 

99SB) 

1A 
pose 

prediction 
va7rj 23 2.96 – – 
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8 

Vina 

 no 

constraints 

Best score 1A ranking – – – 0.42 0.29 

9 

Gold/ASP 

no 

constraints 

Best score 1B 
pose 

prediction 
8wv4r 24 8.49 – – 

10 

Gold/ASP 

no 

constraints 

Best 

RMSD 
1B 

pose 

prediction 
8byha 24 3.95 – – 

11 

Glide/SP 

scaffold 

match 

constraint 

Best score 2 ranking 87q5m 33 – 0.34±0.18 0.20±0.14 

12 

Glide/SP 

scaffold 

match 

constraint 

Best score 2 
ranking 

free energy 
js3r3 33 — 0.35±0.17 0.25±0.12 

 

The performance of pose prediction is variable within the dataset, depending on the nature of 

the ligand, as shown in Figure 6. When only half of the ligand structure is correctly positioned 

(a), very high RMSD values are obtained, but when the core of the ligand is correctly positioned 

(b and c), moderate to very good RMSD values can be expected. 
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Figure 6. Comparison of our Phase 1A best ranking poses without constraints (submission 

“gior3”, cyan) with the corresponding crystal structure conformations (magenta) for compounds 

CatS_7 (a, RMSD 7.84 Å), CatS_17 (b, RMSD 4.33 Å) and CatS_20 (c, RMSD 1.03 Å). 

 

Pose prediction (Phase 1B) 

In Phase 1B, we carried out docking calculations using the 24 crystal structures corresponding 

to the compounds CatS_1 to CatS_24 that were released at the end of Phase 1A (but without the 

coordinates of the ligands) with their native ligands. The results from Table 2 (entries 9 and 10) 

show that the re-docking of ligands into their native structures provided only a slight 

improvement in the pose prediction for the “best RMSD” submission (from 4.36 Å to 3.95 Å) 

and a very bad pose prediction for the “best score” submission (8.49 Å instead of 5.19 Å). 

 

Scoring and free energy calculations (Phase 2) 

In phase 2, we only predicted the relative ranking for the 33 compounds of the free energy set 

(Table 2, entries 11 and 12). We used the Glide/SP protocol with scaffold constraints applied on 

the common substructure of ligands with either CatS_15, CatS_20 or CatS_24. The poses with 

the best docking score (1 pose per compound) were submitted for Phase 2 ranking prediction. 

The same CatS complexes were also used for relative free energy calculations, which were 

carried out using a protocol described in a previous paper [9]. The compound CatS_67 was used 

as reference, and the calculations were designed in order to minimize the transformations 

involving a change in the global charge of the ligand (Figure 7). Our previous study [9] has 

highlighted some potential OPLS-AA force field issues involving non-optimal dihedrals 
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associated with the sulfonamide group that are now fixed (manuscript in preparation), the 

simulations from this study using optimal parameters. 

 

 

Figure 7. Diagram showing the pathways used for relative free energy calculations. The 

molecule (m) number corresponds to the CatS compounds numbering in the free energy dataset 

(see Figure 3). The compounds highlighted in green, orange and blue are positively charged, 

neutral and negatively charged, respectively. 

 The correlation coefficients obtained in Phase 2 are not as good as those obtained in Phase 1A, 

indicating that Glide is not performing well in ranking the poses from this free energy subset 

(Table 2, entry 11). Similarly, the free energy calculations do not improve the quality of the 
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ranking prediction compared with the direct ranking prediction from the scoring function (Table 

2, entry 12). However, much better results are obtained when considering only the co-

crystallized ligands (RMSEc of 0.32±0.24 kcal/mol, Kendall’s τ of 1.0±0.47, Spearman’s ρ of 

1.0±0.49, Pearson’s r of 0.83±0.49), indicating a possible bad positioning of the peripheral 

groups that may affect the correct ranking of the compounds. 

 

CONCLUSIONS 

In this challenge we used a protocol involving an initial assessment of the most appropriate 

docking software and parameters using structural and functional information available in public 

databases followed by the docking of a CatS inhibitors dataset to provide a prediction for the 

binding modes and ranking of ligands. The size and conformational flexibility of ligands were 

important factors to take into account, and the docking calculations afforded reasonable overall 

pose predictions, which are however dependent on the specific nature of each ligand. In general, 

the rigid core of the ligands was well positioned, but the conformation of the flexible substituents 

was more difficult to predict, in spite of the high value of search efficiency used in the docking 

process. As we also observed during the previous D3R challenges, the correct ranking of docking 

poses is still a problematic issue. Post-processing of docking poses with molecular dynamics 

simulations in explicit solvent can significantly improve the prediction. No significant 

improvement in the ranking prediction, compared with the direct ranking obtained from the 

scoring function, was provided by free energy calculations. 

Electronic Supplementary Material. The Electronic Supplementary Material contains the list 

of CatS crystal structures from the PDB, the chemical structures of the scoring CatS D3RGC3 

dataset, and the plots showing the performance of our submissions. 
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Table S1. Cathepsin S structures available in the PDB 

PDB code Resolution (Å) Ligand Organism 
1GLO 2.2 – Homo sapiens 

1MS6 1.9 BLN Homo sapiens 

1NPZ 2.0 C1P Homo sapiens 

1NQC 1.8 C4P Homo sapiens 

2C0Y 2.1 – Homo sapiens 

2F1G 1.9 GNF Homo sapiens 

2FQ9 1.65 – Homo sapiens 

2FRA 1.9 – Homo sapiens 

2FRQ 1.6 – Homo sapiens 

2FT2 1.7 – Homo sapiens 

2FUD 1.95 – Homo sapiens 

2FYE 2.2 – Homo sapiens 

2G6D 2.5 – Homo sapiens 

2G7Y 2.0 – Homo sapiens 

2H7J 1.5 – Homo sapiens 

2HH5 1.8 GNQ Homo sapiens 

2HHN 1.55 GNQ Homo sapiens 

2HXZ 1.9 – Homo sapiens 

2OP3 1.6 TF5 Homo sapiens 

2R9M 1.97 Y11 Homo sapiens 

2R9N 2.0 – Homo sapiens 

2R9O 2.0 – Homo sapiens 

3IEJ 2.18 599 Homo sapiens 

3KWN/5QC4 2.1 23Z Homo sapiens 

3MPE/5QBY 2.25 N2A Homo sapiens 

3MPF/5QBV 1.8 N2D Homo sapiens 

3N3G 1.6 93N Homo sapiens 

3N4C 1.9 EF3 Homo sapiens 

3OVX 1.49 O64 Homo sapiens 

4P6E 1.8 2FC Homo sapiens 

4P6G 1.58 2FZ Homo sapiens 

4BPV 2.0 – Mus musculus 

4BQV 1.7 – Mus musculus 

4BS5 1.25 MG2 Mus musculus 

4BS6 1.2 – Mus musculus 

4BSQ 1.96 QQV Mus musculus 

4MZO 1.47 – Mus musculus 

4MZS 1.85 – Mus musculus 
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Table S2. Kendall’s τ and Spearman’s ρ correlations for the whole training set (black) and of a subset of 

compounds having a Tanimoto similarity score of >0.5 with any compound from the CatS D3RGC3 dataset 

(blue). See also Figure S1. 

 CatS_conf1  CatS_conf2  CatS_conf3  CatS_conf4  

 Kendall Spearman Kendall Spearman Kendall Spearman Kendall Spearman 

Gold 
(Goldscore) 

-0.05 

0.04 

-0.07 

-0.18 

-0.07 

-0.13 

-0.10 

-0.21 

-0.10 

0.04 

-0.14 

-0.23 

-0.06 

0.07 

-0.09 

-0.09 

Gold 
(Chemscore) 

-0.20 

-0.12 

-0.29 

0.07 

-0.20 

-0.14 

-0.28 

-0.20 

-0.22 

-0.16 

-0.33 

0.06 

-0.18 

-0.07 

-0.26 

0.10 

Gold (ASP) 
-0.07 

0.04 

-0.10 

0.07 

-0.09 

-0.05 

-0.13 

-0.08 

-0.07 

0.00 

-0.10 

0.00 

-0.08 

0.07 

-0.12 

0.10 

Gold 
(ChemPLP) 

-0.09 

-0.02 

-0.14 

-0.02 

-0.08 

-0.11 

-0.12 

-0.16 

-0.12 

-0.08 

-0.18 

-0.11 

-0.10 

0.06 

-0.14 

0.09 

Glide (SP) 
0.11 

0.12 

0.17 

0.17 

-0.03 

-0.13 

-0.04 

-0.19 

-0.03 

-0.06 

-0.05 

-0.10 

0.07 

0.02 

0.10 

0.03 

Vina 
0.04 

0.25 

0.06 

0.35 

0.00 

0.21 

0.00 

0.29 

0.03 

0.29 

0.04 

0.42 

0.04 

0.34 

0.06 

0.47 
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Figure S1. Dendrogram showing that the training set contains two main clusters (red and blue, left) and that 

the second cluster contains three distinct sub-clusters (magenta, orange and green, right). The compounds 

that are similar with the CatS ligands from the D3RGC3 dataset belong all to the blue cluster, and are 

homogeneously distributed within the three sub-clusters magenta, orange and green. 

 

Figure S2. Correlation of Gold ASP (left) and Vina (right) docking scores (using CatS_conf4) with pIC50 

for all compounds from the training set. The compounds are colored according to the two main clusters (see 

Figure S1). 
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Figure S3. Chemical structures of the score CatS dataset, containing 136 ligands used for ranking prediction. 
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Figure S4. Performance of Phase 1A pose prediction submissions for the CatS D3R Grand Challenge 3 
dataset (RMSD for pose 1, mean value over all compounds, complete submissions). Our submissions are 
colored in green. See Table 2 in the main text for details. 

 

 
Figure S5. Performance of Phase 1A pose prediction submissions for the CatS D3R Grand Challenge 3 
dataset (RMSD for pose 1, mean value over all compounds, incomplete submissions). Our submission is 
colored in green. See Table 2 in the main text for details. 
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Figure S6. Performance of Phase 1B pose prediction submissions for the CatS D3R Grand Challenge 3 
dataset (RMSD for pose 1, mean value over all compounds). Our submissions are colored in green. See 
Table 2 in the main text for details. 
 

 
Figure S7. Performance of Phase 1A ranking prediction submissions (Kendall Tau, mean value over all 
compounds) for the CatS D3R Grand Challenge 3 dataset. Our submissions are highlighted in green. See 
Table 2 in the main text for details. 
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Figure S8. Performance of Phase 2 ranking prediction submissions (Kendall Tau, mean value over all 
compounds, incomplete submissions) for the CatS D3R Grand Challenge 3 dataset. Our submission is 
highlighted in green. See Table 2 in the main text for details. 
 
 

 
Figure S9. Performance of Phase 2 free energy submissions (Kendall Tau, mean value over all compounds) 
for the CatS D3R Grand Challenge 3 dataset. Our submission is highlighted in green. See Table 2 in the 
main text for details. 
 
 

 


