Skip to main content

Advertisement

Log in

Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The recent expansion of GPCR crystal structures provides the opportunity to assess the performance of structure-based drug design methods for the GPCR superfamily. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)-based methods are commonly used for binding affinity prediction, as they provide an intermediate compromise of speed and accuracy between the empirical scoring functions used in docking and more robust free energy perturbation methods. In this study, we systematically assessed the performance of MM/PBSA in predicting experimental binding free energies using twenty Class A GPCR crystal structures and 934 known ligands. Correlations between predicted and experimental binding free energies varied significantly between individual targets, ranging from r = − 0.334 in the inactive-state CB1 cannabinoid receptor to r = 0.781 in the active-state CB1 cannabinoid receptor, while average correlation across all twenty targets was relatively poor (r = 0.183). MM/PBSA provided better predictions of binding free energies compared to docking scores in eight out of the twenty GPCR targets while performing worse for four targets. MM/PBSA binding affinity predictions calculated using a single, energy minimized structure provided comparable predictions to sampling from molecular dynamics simulations and may be more efficient when computational cost becomes restrictive. Additionally, we observed that restricting MM/PBSA calculations to ligands with a high degree of structural similarity to the crystal structure ligands improved performance in several cases. In conclusion, while MM/PBSA remains a valuable tool for GPCR structure-based drug design, its performance in predicting the binding free energies of GPCR ligands remains highly system-specific as demonstrated in a subset of twenty Class A GPCRs, and validation of MM/PBSA-based methods for each individual case is recommended before prospective use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5-HT2B :

5-Hydroxytryptamine 2B receptor

A2AAR:

Adenosine A2A receptor

M1R:

Muscarinic acetylcholine 1 receptor

M3R:

Muscarinic acetylcholine 3 receptor

M4R:

Muscarinic acetylcholine 4 receptor

β1AR:

Beta-1 receptor

β2AR:

Beta-2 receptor

CB1 :

Cannabinoid 1 receptor

D3R:

Dopamine 3 receptor

D4R:

Dopamine 4 receptor

EM:

Energy minimized

GPCR:

G protein-coupled receptor

H1R:

Histamine 1 receptor

Ki :

Inhibitory constant

MD:

Molecular dynamics

MM/PBSA:

Molecular Mechanics/Poisson Boltzmann Surface Area

δ-OR:

Delta opioid receptor

μ-OR:

mu opioid receptor

N/OFQ-OR:

Nociception/orphanin FQ receptor

P2Y12 :

Purinergic receptor

PDB:

Protein Data Bank

r :

Pearson correlation coefficient

SBDD:

Structure-based drug design

References

  1. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923.Structure-Function

    Article  CAS  PubMed  Google Scholar 

  2. Sriram K, Insel PA (2018) GPCRs as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol. https://doi.org/10.1124/mol.117.111062

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. https://doi.org/10.1124/mol.63.6.1256

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81. https://doi.org/10.1038/nrm3933

    Article  CAS  PubMed  Google Scholar 

  5. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein–coupled receptor. Science 289:739–745. https://doi.org/10.1126/science.289.5480.739

    Article  CAS  PubMed  Google Scholar 

  6. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1266. https://doi.org/10.1126/science.1150577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rasmussen SGF, Choi H-J, Rosenbaum DM et al (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–387. https://doi.org/10.1038/nature06325

    Article  CAS  PubMed  Google Scholar 

  8. Pándy-Szekeres G, Munk C, Tsonkov TM et al (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446. https://doi.org/10.1093/nar/gkx1109

    Article  CAS  PubMed  Google Scholar 

  9. Michino M, Abola E, Brooks CL et al (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463. https://doi.org/10.1038/nrd2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beuming T, Sherman W (2012) Current assessment of docking into GPCR crystal structures and homology models: successes, challenges, and guidelines. J Chem Inf Model 52:3263–3277. https://doi.org/10.1021/ci300411b

    Article  CAS  PubMed  Google Scholar 

  11. Loo JSE, Emtage AL, Ng KW et al (2018) Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: binding mode prediction and docking enrichment. J Mol Graph Model 80:38–47. https://doi.org/10.1016/j.jmgm.2017.12.017

    Article  CAS  PubMed  Google Scholar 

  12. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897. https://doi.org/10.1021/ar000033

    Article  CAS  PubMed  Google Scholar 

  13. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of Efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230. https://doi.org/10.1021/ja003834q

    Article  CAS  PubMed  Google Scholar 

  15. Huo S, Wang J, Cieplak P et al (2002) Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design. J Med Chem 45:1412–1419. https://doi.org/10.1142/S0219633609005131

    Article  CAS  PubMed  Google Scholar 

  16. Bonnet P, Bryce RA (2005) Scoring binding affinity of multiple ligands using implicit solvent and a single molecular dynamics trajectory: application to Influenza neuraminidase. J Mol Graph Model 24:147–156. https://doi.org/10.1016/j.jmgm.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  17. Wang W, Lim WA, Jakalian A et al (2001) An analysis of the interactions between the sem—5 SH3 domain and its ligands using molecular dynamics, free energy calculations, and sequence analysis. J Am Chem Soc 123:3986–3994. https://doi.org/10.1021/ja003164o

    Article  CAS  PubMed  Google Scholar 

  18. Chéron N, Shakhnovich EI (2017) Effect of sampling on BACE-1 ligands binding free energy predictions via MM-PBSA calculations. J Comput Chem 38:1941–1951. https://doi.org/10.1002/jcc.24839

    Article  CAS  PubMed  Google Scholar 

  19. Rastelli G, Del Rio A, Degliesposti G, Sgobba M (2010) Fast and Accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 31:797–810. https://doi.org/10.1002/jcc.21372

    Article  CAS  PubMed  Google Scholar 

  20. Ferrari AM, Degliesposti G, Sgobba M, Rastelli G (2007) Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorg Med Chem 15:7865–7877. https://doi.org/10.1016/j.bmc.2007.08.019

    Article  CAS  PubMed  Google Scholar 

  21. Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43:3786–3791. https://doi.org/10.1021/jm000241h

    Article  CAS  PubMed  Google Scholar 

  22. Pearlman D (2005) Evaluating the molecular mechanics Poisson—Boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J Med Chem 48:7796–7807. https://doi.org/10.1021/jm050306m

    Article  CAS  PubMed  Google Scholar 

  23. Singh N, Warshel A (2010) Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions. Proteins 78:1705–1723. https://doi.org/10.1002/prot.22687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) Validation and use of the MM-PBSA approach for drug discovery. J Med Chem 48:4040–4048. https://doi.org/10.1021/jm049081q

    Article  CAS  PubMed  Google Scholar 

  25. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. https://doi.org/10.1021/ci100275a

    Article  CAS  PubMed  Google Scholar 

  26. Sun H, Li Y, Tian S et al (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 16:16719. https://doi.org/10.1039/C4CP01388C

    Article  CAS  PubMed  Google Scholar 

  27. Xu L, Sun H, Li Y et al (2013) Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J Phys Chem B 117:8408–8421. https://doi.org/10.1021/jp404160y

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Nguyen PH, Pham K et al (2016) Calculating protein–ligand binding affinities with MMPBSA: method and error analysis. J Comput Chem 37:2436–2446. https://doi.org/10.1002/jcc.24467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang T, Wu JC, Yan C et al (2011) Virtual screening using molecular simulations. Proteins 79:1940–1951. https://doi.org/10.1002/prot.23018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anighoro A, Rastelli G (2013) Enrichment factor analyses on g-protein coupled receptors with known crystal structure. J Chem Inf Model 53:739–743. https://doi.org/10.1021/ci4000745

    Article  CAS  PubMed  Google Scholar 

  31. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maestro, Schrödinger, LLC, New York, NY, 2018

  33. Shelley JC, Cholleti A, Frye LL et al (2007) Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691. https://doi.org/10.1007/s10822-007-9133-z

    Article  CAS  PubMed  Google Scholar 

  34. Jacobson MP, Friesner RA, Xiang Z, Honig B (2002) On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 320:597–608. https://doi.org/10.1016/S0022-2836(02)00470-9

    Article  CAS  PubMed  Google Scholar 

  35. Gaulton A, Hersey A, Nowotka ML et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–D954. https://doi.org/10.1093/nar/gkw1074

    Article  CAS  PubMed  Google Scholar 

  36. LigPrep, Schrödinger, LLC, New York, NY, 2018

  37. Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67:83–84. https://doi.org/10.1111/j.1747-0285.2005.00327.x

    Article  CAS  PubMed  Google Scholar 

  38. Sherman W, Day T, Jacobson MP et al (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553. https://doi.org/10.1021/jm050540c

    Article  CAS  PubMed  Google Scholar 

  39. Cheng T, Li X, Li Y et al (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49:1079–1093. https://doi.org/10.1021/ci9000053

    Article  CAS  PubMed  Google Scholar 

  40. Ferrara P, Gohlke H, Price DJ et al (2004) Assessing scoring functions for protein–ligand interactions. J Med Chem 47:3032–3047

    Article  CAS  PubMed  Google Scholar 

  41. Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755. https://doi.org/10.1002/jcc

    Article  CAS  PubMed  Google Scholar 

  42. Wang R, Lu Y, Fang X, Wang S (2004) An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein–ligand complexes. J Chem Inf Comput Sci 44:2114–2125. https://doi.org/10.1021/ci049733j

    Article  CAS  PubMed  Google Scholar 

  43. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303. https://doi.org/10.1021/Jm0203783

    Article  CAS  PubMed  Google Scholar 

  44. Warren GL, Andrews CW, Capelli A-M et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931. https://doi.org/10.1021/jm050362n

    Article  CAS  PubMed  Google Scholar 

  45. Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975. https://doi.org/10.1039/c6cp01555g

    Article  CAS  PubMed  Google Scholar 

  46. Abraham MJ, Hess B, van der Spoel D, Lindahl E (2018) GROMACS user manual version 2018

  47. Lindorff-Larsen K, Piana S, Palmo K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958. https://doi.org/10.1002/prot.22711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  49. Sousa Da Silva AW, Vranken WF (2012) ACPYPE—AnteChamber PYthon parser interface. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367

    Article  PubMed  PubMed Central  Google Scholar 

  50. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  51. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122. https://doi.org/10.1021/ct700200b

    Article  CAS  PubMed  Google Scholar 

  52. Hess B, Bekker H, Berendsen HJC, Fraaije JJGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463:AID-JCC4%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  53. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  54. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  55. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076. https://doi.org/10.1080/00268978300102851

    Article  Google Scholar 

  56. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity-rescaling. J Chem Phys 126:1–8. https://doi.org/10.1063/1.2408420

    Article  CAS  Google Scholar 

  57. Kumari R, Kumar R, Lynn A (2014) G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  58. Wang W, Kollman PA (2000) Free Energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J Mol Biol 303:567–582. https://doi.org/10.1006/jmbi.2000.4057

    Article  CAS  PubMed  Google Scholar 

  59. Sun H, Li Y, Shen M et al (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance by using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 16:22035–22045. https://doi.org/10.1039/C4CP03179B

    Article  CAS  PubMed  Google Scholar 

  60. Jacobson KA (2013) Crystal structures of the A2A adenosine receptor and their use in medicinal chemistry. Silico Pharmacol 1:22. https://doi.org/10.1186/2193-9616-1-22

    Article  Google Scholar 

  61. Weis A, Katebzadeh K, Söderhjelm P et al (2006) Ligand affinities Predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 49:6596–6606. https://doi.org/10.1021/jm0608210

    Article  CAS  PubMed  Google Scholar 

  62. Liu Z, Li Y, Han L et al (2015) PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31:405–412. https://doi.org/10.1093/bioinformatics/btu626

    Article  CAS  PubMed  Google Scholar 

  63. Chaput L, Martinez-Sanz J, Saettel N, Mouawad L (2016) Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance. J Cheminform 8:1–17. https://doi.org/10.1186/s13321-016-0167-x

    Article  PubMed  PubMed Central  Google Scholar 

  64. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280. https://doi.org/10.1021/ci010132r

    Article  CAS  PubMed  Google Scholar 

  65. Maffucci I, Contini A (2013) Explicit ligand hydration shells improve the correlation between MM-PB/GBSA binding energies and experimental activities. J Chem Theory Comput 9:2706–2717. https://doi.org/10.1021/ct400045d

    Article  CAS  PubMed  Google Scholar 

  66. Zhu YL, Beroza P, Artis DR (2014) Including explicit water molecules as part of the protein structure in MM/PBSA calculations. J Chem Inf Model 54:462–469. https://doi.org/10.1021/ci4001794

    Article  CAS  PubMed  Google Scholar 

  67. Yang T, Wu JC, Yan C et al (2011) Virtual screening using molecular simulations. Proteins Struct Funct Bioinf 79:1940–1951. https://doi.org/10.1002/prot.23018

    Article  CAS  Google Scholar 

  68. Oehme DP, Brownlee RTC, Wilson DJD (2012) Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. J Comput Chem 33:2566–2580. https://doi.org/10.1002/jcc.23095

    Article  CAS  PubMed  Google Scholar 

  69. Su PC, Tsai CC, Mehboob S et al (2015) Comparison of radii sets, entropy, QM methods, and sampling on MM-PBSA, MM-GBSA, and QM/MM-GBSA ligand binding energies of F. tularensis enoyl-ACP reductase (FabI). J Comput Chem 36:1859–1873. https://doi.org/10.1002/jcc.24011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Taylor’s University through its Taylor’s University Flagship Research Grant Scheme under grant number TUFR/2017/002/10 and Taylor’s PhD Scholarship Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors gave approval to the final version of the manuscript.

Corresponding author

Correspondence to Jason S. E. Loo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2019_201_MOESM1_ESM.pdf

Supplementary material 1. The full list of ligands used in the datasets is available as supporting information (PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yau, M.Q., Emtage, A.L., Chan, N.J.Y. et al. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures. J Comput Aided Mol Des 33, 487–496 (2019). https://doi.org/10.1007/s10822-019-00201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00201-3

Keywords

Navigation