Skip to main content
Log in

Unravelling the covalent binding of zampanolide and taccalonolide AJ to a minimalist representation of a human microtubule

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Many natural products target mammalian tubulin but only a few can form a covalent bond and hence irreversibly affect microtubule function. Among them, zampanolide (ZMP) and taccalonolide AJ (TAJ) stand out, not only because they are very potent antitumor agents but also because the adducts they form with β-tubulin have been structurally characterized in atomic detail. By applying model building techniques, molecular orbital calculations, molecular dynamics simulations and hybrid QM/MM methods, we have gained insight into the 1,2- and 1,4-addition reactions of His229 and Asp226 to ZMP and TAJ, respectively, in the taxane-binding site of β-tubulin. The experimentally inaccessible precovalent complexes strongly suggest a water-mediated proton shuttle mechanism for ZMP adduct formation and a direct nucleophilic attack by the carboxylate of Asp226 on C22 of the C22R,C23R epoxide in TAJ. The M-loop, which is crucially important for interprotofilament interactions, is structured into a short helix in both types of complexes, mostly as a consequence of the fixation of the phenol ring of Tyr283 and the guanidinium of Arg284. As a side benefit, we obtained evidence supporting the existence of a commonly neglected intramolecular disulfide bond between Cys241 and Cys356 in β-tubulin that contributes to protein compactness and is absent in the βIII isotype associated with resistance to taxanes and other drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DFTB:

Density functional-based tight-binding

MM-ISMSA:

Molecular mechanics-implicit solvent model surface area

QM/MM:

Quantum mechanics/molecular mechanics

sMD:

Steered molecular dynamics

uMD:

Unrestrained molecular dynamics

References

  1. De Cesco S, Kurian J, Dufresne C, Mittermaier AK, Moitessier N (2017) Covalent inhibitors design and discovery. Eur J Med Chem 138:96–114. https://doi.org/10.1016/j.ejmech.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  2. Scarpino A, Ferenczy GG, Keseru GM (2018) Comparative evaluation of covalent docking tools. J Chem Inf Model 58(7):1441–1458. https://doi.org/10.1021/acs.jcim.8b00228

    Article  CAS  PubMed  Google Scholar 

  3. Manka SW, Moores CA (2018) The role of tubulin–tubulin lattice contacts in the mechanism of microtubule dynamic instability. Nat Struct Mol Biol 25:607–615. https://doi.org/10.1038/s41594-018-0087-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stanton RA, Gernert KM, Nettles JH, Aneja R (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31(3):443–481. https://doi.org/10.1002/med.20242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gigant B, Cormier A, Dorleans A, Ravelli RB, Knossow M (2009) Microtubule-destabilizing agents: structural and mechanistic insights from the interaction of colchicine and vinblastine with tubulin. Top Curr Chem 286:259–278. https://doi.org/10.1007/128_2008_11

    Article  CAS  PubMed  Google Scholar 

  6. Altmann KH, Gertsch J (2007) Anticancer drugs from nature–natural products as a unique source of new microtubule-stabilizing agents. Nat Prod Rep 24(2):327–357. https://doi.org/10.1039/b515619j

    Article  CAS  PubMed  Google Scholar 

  7. Vonck J, Mills DJ (2017) Advances in high-resolution cryo-EM of oligomeric enzymes. Curr Opin Struct Biol 46:48–54. https://doi.org/10.1016/j.sbi.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  8. Nogales E, Kellogg EH (2017) Challenges and opportunities in the high-resolution cryo-EM visualization of microtubules and their binding partners. Curr Opin Struct Biol 46:65–70. https://doi.org/10.1016/j.sbi.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, de Silva D, Zharkikh A, Thomas A (2006) Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet 43(4):295–305. https://doi.org/10.1136/jmg.2005.033878

    Article  CAS  PubMed  Google Scholar 

  10. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315. https://doi.org/10.1038/ng.2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, Day IN, Gaunt TR (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34(1):57–65. https://doi.org/10.1002/humu.22225

    Article  CAS  PubMed  Google Scholar 

  12. Reva B, Antipin Y, Sander C (2007) Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol 8(11):R232. https://doi.org/10.1186/gb-2007-8-11-r232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinmetz MO, Prota AE (2018) Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 28(10):776–792. https://doi.org/10.1016/j.tcb.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  14. Prota AE, Bargsten K, Zurwerra D, Field JJ, Diaz JF, Altmann KH, Steinmetz MO (2013) Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 339(6119):587–590. https://doi.org/10.1126/science.1230582

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Yu Y, Li GB, Li SA, Wu C, Gigant B, Qin W, Chen H, Wu Y, Chen Q, Yang J (2017) Mechanism of microtubule stabilization by taccalonolide AJ. Nat Commun 8:15787. https://doi.org/10.1038/ncomms15787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaudhuri AR, Khan IA, Ludueña RF (2001) Detection of disulfide bonds in bovine brain tubulin and their role in protein folding and microtubule assembly in vitro: a novel disulfide detection approach. Biochemistry 40(30):8834–8841

    Article  CAS  PubMed  Google Scholar 

  17. Nogales E, Scheres SH (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol Cell 58(4):677–689. https://doi.org/10.1016/j.molcel.2015.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weik M, Ravelli RBG, Kryger G, McSweeney S, Raves ML, Harel M, Gros P, Silman I, Kroon J, Sussman JL (2000) Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc Natl Acad Sci USA 97(2):623–628. https://doi.org/10.1073/pnas.97.2.623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerstel M, Deane CM, Garman EF (2015) Identifying and quantifying radiation damage at the atomic level. J Synchrotron Radiat 22(2):201–212. https://doi.org/10.1107/s1600577515002131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deller MC, Rupp B (2015) Models of protein-ligand crystal structures: trust, but verify. J Comput Aided Mol Des 29(9):817–836. https://doi.org/10.1007/s10822-015-9833-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nitsche C, Otting G (2018) NMR studies of ligand binding. Curr Opin Struct Biol 48:16–22. https://doi.org/10.1016/j.sbi.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  22. Orts J, Gossert AD (2018) Structure determination of protein-ligand complexes by NMR in solution. Methods 138–139:3–25. https://doi.org/10.1016/j.ymeth.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  23. Bhunia A, Bhattacharjya S, Chatterjee S (2012) Applications of saturation transfer difference NMR in biological systems. Drug Discov Today 17(9–10):505–513. https://doi.org/10.1016/j.drudis.2011.12.016

    Article  CAS  PubMed  Google Scholar 

  24. Becker W, Bhattiprolu KC, Gubensak N, Zangger K (2018) Investigating protein-ligand interactions by solution nuclear magnetic resonance spectroscopy. ChemPhysChem 19(8):895–906. https://doi.org/10.1002/cphc.201701253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sato B, Muramatsu H, Miyauchi M, Hori Y, Takase S, Hino M, Hashimoto S, Terano H (2000) A new antimitotic substance, FR182877. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 53(2):123–130

    Article  CAS  Google Scholar 

  26. Sato B, Nakajima H, Hori Y, Hino M, Hashimoto S, Terano H (2000) A new antimitotic substance, FR182877. II. The mechanism of action. J Antibiot (Tokyo) 53(2):204–206

    Article  CAS  Google Scholar 

  27. Löwe J, Li H, Downing KH, Nogales E (2001) Refined structure of ab-tubulin at 3.5 Å resolution. J Mol Biol 313(5):1045–1057. https://doi.org/10.1006/jmbi.2001.5077

    Article  CAS  PubMed  Google Scholar 

  28. Edler MC, Buey RM, Gussio R, Marcus AI, Vanderwal CD, Sorensen EJ, Diaz JF, Giannakakou P, Hamel E (2005) Cyclostreptin (FR182877), an antitumor tubulin-polymerizing agent deficient in enhancing tubulin assembly despite its high affinity for the taxoid site. Biochemistry 44(34):11525–11538. https://doi.org/10.1021/bi050660m

    Article  PubMed  Google Scholar 

  29. Yoshimura S, Sato B, Kinoshita T, Takase S, Terano H (2000) A new antimitotic substance, FR182877.III. Structure determination. J Antibiot (Tokyo) 53(6):615–622

    Article  CAS  Google Scholar 

  30. Buey RM, Calvo E, Barasoain I, Pineda O, Edler MC, Matesanz R, Cerezo G, Vanderwal CD, Day BW, Sorensen EJ, Lopez JA, Andreu JM, Hamel E, Diaz JF (2007) Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites. Nat Chem Biol 3(2):117–125. https://doi.org/10.1038/nchembio853

    Article  CAS  PubMed  Google Scholar 

  31. Vanderwal CD, Vosburg DA, Weiler S, Sorensen EJ (2003) An enantioselective synthesis of FR182877 provides a chemical rationalization of its structure and affords multigram quantities of its direct precursor. J Am Chem Soc 125(18):5393–5407. https://doi.org/10.1021/ja021472b

    Article  CAS  PubMed  Google Scholar 

  32. Adam GC, Vanderwal CD, Sorensen EJ, Cravatt BF (2003) (-)-FR182877 is a potent and selective inhibitor of carboxylesterase-1. Angew Chem Int Ed Engl 42(44):5480–5484. https://doi.org/10.1002/anie.200352576

    Article  CAS  PubMed  Google Scholar 

  33. Bencharit S, Morton CL, Hyatt JL, Kuhn P, Danks MK, Potter PM, Redinbo MR (2003) Crystal structure of human carboxylesterase 1 complexed with the alzheimer’s drug tacrine. Chem Biol 10(4):341–349. https://doi.org/10.1016/s1074-5521(03)00071-1

    Article  CAS  PubMed  Google Scholar 

  34. Balaguer FA, Mühlethaler T, Estévez-Gallego J, Calvo E, Giménez-Abián JF, Risinger AL, Sorensen EJ, Vanderwal CD, Altmann KH, Mooberry SL, Steinmetz MO, Oliva MA, Prota AE, Díaz JF (2019) Crystal structure of the cyclostreptin-tubulin adduct implications for tubulin activation by taxane-site ligands. Int J Mol Sci. https://doi.org/10.3390/ijms20061392

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tanaka J-I, Higa T (1996) Zampanolide, a new cytotoxic macrolide from a marine sponge. Tetrahedron Lett 37(31):5535–5538. https://doi.org/10.1016/0040-4039(96)01149-5

    Article  CAS  Google Scholar 

  36. Field JJ, Pera B, Calvo E, Canales A, Zurwerra D, Trigili C, Rodriguez-Salarichs J, Matesanz R, Kanakkanthara A, Wakefield SJ, Singh AJ, Jimenez-Barbero J, Northcote P, Miller JH, Lopez JA, Hamel E, Barasoain I, Altmann KH, Diaz JF (2012) Zampanolide, a potent new microtubule-stabilizing agent, covalently reacts with the taxane luminal site in tubulin alpha, beta-heterodimers and microtubules. Chem Biol 19(6):686–698. https://doi.org/10.1016/j.chembiol.2012.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen QH, Kingston DG (2014) Zampanolide and dactylolide: cytotoxic tubulin-assembly agents and promising anticancer leads. Nat Prod Rep 31(9):1202–1226. https://doi.org/10.1039/c4np00024b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Larsen EM, Wilson MR, Zajicek J, Taylor RE (2013) Conformational preferences of zampanolide and dactylolide. Org Lett 15(20):5246–5249. https://doi.org/10.1021/ol402462h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kellogg EH, Hejab NMA, Howes S, Northcote P, Miller JH, Diaz JF, Downing KH, Nogales E (2017) Insights into the distinct mechanisms of action of taxane and non-taxane microtubule stabilizers from cryo-EM structures. J Mol Biol 429(5):633–646. https://doi.org/10.1016/j.jmb.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E (2014) High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 157(5):1117–1129. https://doi.org/10.1016/j.cell.2014.03.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li J, Risinger AL, Mooberry SL (2014) Taccalonolide microtubule stabilizers. Bioorg Med Chem 22(18):5091–5096. https://doi.org/10.1016/j.bmc.2014.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Risinger AL, Li J, Bennett MJ, Rohena CC, Peng J, Schriemer DC, Mooberry SL (2013) Taccalonolide binding to tubulin imparts microtubule stability and potent in vivo activity. Cancer Res 73(22):6780–6792. https://doi.org/10.1158/0008-5472.CAN-13-1346

    Article  CAS  PubMed  Google Scholar 

  43. Li J, Risinger AL, Peng J, Chen Z, Hu L, Mooberry SL (2011) Potent taccalonolides, AF and AJ, inform significant structure-activity relationships and tubulin as the binding site of these microtubule stabilizers. J Am Chem Soc 133(47):19064–19067. https://doi.org/10.1021/ja209045k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Du L, Risinger AL, Yee SS, Ola ARB, Zammiello CL, Cichewicz RH, Mooberry SL (2019) Identification of C-6 as a new site for linker conjugation to the taccalonolide microtubule stabilizers. J Nat Prod. https://doi.org/10.1021/acs.jnatprod.8b01036

    Article  PubMed  PubMed Central  Google Scholar 

  45. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM (2018) Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 18(7):452–464. https://doi.org/10.1038/s41568-018-0005-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Field JJ, Northcote PT, Paterson I, Altmann KH, Diaz JF, Miller JH (2017) Zampanolide, a microtubule-stabilizing agent, is active in resistant cancer cells and inhibits cell migration. Int J Mol Sci 18(5):1. https://doi.org/10.3390/ijms18050971

    Article  CAS  Google Scholar 

  47. Jorgensen WL (2013) Foundations of biomolecular modeling. Cell 155(6):1199–1202. https://doi.org/10.1016/j.cell.2013.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, Shaw DE (2011) How does a drug molecule find its target binding site? J Am Chem Soc 133(24):9181–9183. https://doi.org/10.1021/ja202726y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52(16):2708–2728. https://doi.org/10.1021/bi400215w

    Article  CAS  PubMed  Google Scholar 

  50. Sánchez-Murcia PA, Bueren-Calabuig JA, Camacho-Artacho M, Cortés-Cabrera A, Gago F (2016) Stepwise simulation of 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) biogenesis in histidine ammonia-lyase. Biochemistry 55(41):5854–5864. https://doi.org/10.1021/acs.biochem.6b00744

    Article  CAS  PubMed  Google Scholar 

  51. Groenhof G (2013) Introduction to QM/MM simulations. Methods Mol Biol 924:43–66. https://doi.org/10.1007/978-1-62703-017-5_3

    Article  CAS  PubMed  Google Scholar 

  52. Dickerson RE, Goodsell DS, Neidle S (1994) “…the tyranny of the lattice…”. Proc Natl Acad Sci USA 91(9):3579–3583. https://doi.org/10.1073/pnas.91.9.3579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, A01 edn. Gaussian Inc., Wallingford, CT

    Google Scholar 

  54. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Phys Chem 132(11):114110. https://doi.org/10.1063/1.3359469

    Article  CAS  Google Scholar 

  55. Walker RC, Crowley MF, Case DA (2008) The implementation of a fast and accurate QM/MM potential method in AMBER. J Comput Chem 29(7):1019–1031. https://doi.org/10.1002/jcc.20857

    Article  CAS  PubMed  Google Scholar 

  56. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641. https://doi.org/10.1002/jcc.10128

    Article  CAS  PubMed  Google Scholar 

  57. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The AMBER biomolecular simulation programs. J Comput Chem 26(16):1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown ID, McMahon B (2002) CIF: the computer language of crystallography. Acta Crystallogr B 58(Pt 3 Pt 1):317–324

    Article  PubMed  Google Scholar 

  60. Moriarty NW, Grosse-Kunstleve RW, Adams PD (2009) Electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D 65(10):1074–1080. https://doi.org/10.1107/s0907444909029436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66(Pt 4):486–501. https://doi.org/10.1107/S0907444910007493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66(Pt 2):213–221. https://doi.org/10.1107/S0907444909052925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Echols N, Headd JJ, Hung LW, Jain S, Kapral GJ, Grosse Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner RD, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2011) The Phenix software for automated determination of macromolecular structures. Methods 55(1):94–106. https://doi.org/10.1016/j.ymeth.2011.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Afonine PV, Moriarty NW, Mustyakimov M, Sobolev OV, Terwilliger TC, Turk D, Urzhumtsev A, Adams PD (2015) FEM: feature-enhanced map. Acta Crystallogr 71(Pt 3):646–666. https://doi.org/10.1107/S1399004714028132

    Article  CAS  Google Scholar 

  65. Allouche AR (2011) Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem 32(1):174–182. https://doi.org/10.1002/jcc.21600

    Article  CAS  PubMed  Google Scholar 

  66. Trigili C, Barasoain I, Sánchez-Murcia PA, Bargsten K, Redondo-Horcajo M, Nogales A, Gardner NM, Meyer A, Naylor GJ, Gómez-Rubio E, Gago F, Steinmetz MO, Paterson I, Prota AE, Díaz JF (2016) Structural determinants of the dictyostatin chemotype for tubulin binding affinity and antitumor activity against taxane- and epothilone-resistant cancer cells. ACS Omega 1(6):1192–1204. https://doi.org/10.1021/acsomega.6b00317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ma YT, Yang Y, Cai P, Sun DY, Sanchez-Murcia PA, Zhang XY, Jia WQ, Lei L, Guo M, Gago F, Wang H, Fang WS (2018) A series of enthalpically optimized docetaxel analogues exhibiting enhanced antitumor activity and water solubility. J Nat Prod 81(3):524–533. https://doi.org/10.1021/acs.jnatprod.7b00857

    Article  CAS  PubMed  Google Scholar 

  68. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40(1):W537–W541. https://doi.org/10.1093/nar/gks375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. J Chem Theory Comput 9(9):3878–3888. https://doi.org/10.1021/ct400314y

    Article  CAS  PubMed  Google Scholar 

  70. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  71. Le Grand S, Götz AW, Walker RC (2013) SPFP: speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput Phys Commun 184(2):374–380. https://doi.org/10.1016/j.cpc.2012.09.022

    Article  CAS  Google Scholar 

  72. Roe DR, Cheatham TE 3rd (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095. https://doi.org/10.1021/ct400341p

    Article  CAS  PubMed  Google Scholar 

  73. Ramsey S, Nguyen C, Salomon-Ferrer R, Walker RC, Gilson MK, Kurtzman T (2016) Solvation thermodynamic mapping of molecular surfaces in AmberTools: GIST. J Comput Chem 37(21):2029–2037. https://doi.org/10.1002/jcc.24417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brunger AT, Adams PD (2002) Molecular dynamics applied to X-ray structure refinement. Acc Chem Res 35(6):404–412

    Article  CAS  PubMed  Google Scholar 

  75. Klett J, Núñez-Salgado A, Dos Santos HG, Cortés-Cabrera Á, Perona A, Gil-Redondo R, Abia D, Gago F, Morreale A (2012) MM-ISMSA: an ultrafast and accurate scoring function for protein–protein docking. J Chem Theory Comput 8(9):3395–3408. https://doi.org/10.1021/ct300497z

    Article  CAS  PubMed  Google Scholar 

  76. Morreale A, Gil-Redondo R, Ortiz AR (2007) A new implicit solvent model for protein-ligand docking. Proteins 67(3):606–616. https://doi.org/10.1002/prot.21269

    Article  CAS  PubMed  Google Scholar 

  77. Porezag D, Frauenheim T, Kohler T, Seifert G, Kaschner R (1995) Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys Rev B 51(19):12947–12957

    Article  CAS  Google Scholar 

  78. Seifert G, Porezag D, Frauenheim T (1996) Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme. Int J Quantum Chem 58(2):185–192. https://doi.org/10.1002/(SICI)1097-461X(1996)58:2%3c185:AID-QUA7%3e3.0.CO;2-U

    Article  CAS  Google Scholar 

  79. Gaus M, Cui Q, Elstner M (2011) DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J Chem Theory Comput 7(4):931–948. https://doi.org/10.1021/ct100684s

    Article  CAS  Google Scholar 

  80. Seabra GdM, Walker RC, Elstner M, Case DA, Roitberg AE (2007) Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the AMBER molecular dynamics package. J Phys Chem A 111(26):5655–5664. https://doi.org/10.1021/jp070071l

    Article  CAS  Google Scholar 

  81. Lee TS, Radak BK, Huang M, Wong KY, York DM (2014) Roadmaps through free energy landscapes calculated using the multi-dimensional vFEP approach. J Chem Theory Comput 10(1):24–34. https://doi.org/10.1021/ct400691f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23(2):187–199. https://doi.org/10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  83. Troast DM, Porco JA Jr (2002) Studies toward the synthesis of (-)-zampanolide: preparation of N-acyl hemiaminal model systems. Org Lett 4(6):991–994. https://doi.org/10.1021/ol025558l

    Article  CAS  PubMed  Google Scholar 

  84. Bueno O, Estévez Gallego J, Martins S, Prota AE, Gago F, Gómez-SanJuan A, Camarasa M-J, Barasoain I, Steinmetz MO, Díaz JF, Pérez-Pérez M-J, Liekens S, Priego E-M (2018) High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design. Sci Rep 8(1):4242. https://doi.org/10.1038/s41598-018-22382-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Prota AE, Bargsten K, Northcote PT, Marsh M, Altmann KH, Miller JH, Diaz JF, Steinmetz MO (2014) Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 53(6):1621–1625. https://doi.org/10.1002/anie.201307749

    Article  CAS  PubMed  Google Scholar 

  86. Menger FM (1987) Nucleophilicity and distance. Adv Chem Ser 215:209–218. https://doi.org/10.1021/ba-1987-0215.ch014

    Article  CAS  Google Scholar 

  87. Krimmer SG, Cramer J, Betz M, Fridh V, Karlsson R, Heine A, Klebe G (2016) Rational design of thermodynamic and kinetic binding profiles by optimizing surface water networks coating protein-bound ligands. J Med Chem 59(23):10530–10548. https://doi.org/10.1021/acs.jmedchem.6b00998

    Article  CAS  PubMed  Google Scholar 

  88. Schmidtke P, Luque FJ, Murray JB, Barril X (2011) Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. J Am Chem Soc 133(46):18903–18910. https://doi.org/10.1021/ja207494u

    Article  CAS  PubMed  Google Scholar 

  89. Cramer J, Krimmer SG, Heine A, Klebe G (2017) Paying the price of desolvation in solvent-exposed protein pockets: impact of distal solubilizing groups on affinity and binding thermodynamics in a series of thermolysin inhibitors. J Med Chem 60(13):5791–5799. https://doi.org/10.1021/acs.jmedchem.7b00490

    Article  CAS  PubMed  Google Scholar 

  90. Williams DH, Stephens E, O’Brien DP, Zhou M (2004) Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. Angew Chem Int Ed 43(48):6596–6616. https://doi.org/10.1002/anie.200300644

    Article  CAS  Google Scholar 

  91. Chao TM, Baker J, Hehre WJ, Kahn SD (1991) Models for selectivity in organic reactions. Pure Appl Chem 63(2):283–288. https://doi.org/10.1351/pac199163020283

    Article  CAS  Google Scholar 

  92. Bürgi HB, Dunitz JD, Shefter E (1973) Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. J Am Chem Soc 95(15):5065–5067. https://doi.org/10.1021/ja00796a058

    Article  Google Scholar 

  93. Risinger AL, Li J, Du L, Benavides R, Robles AJ, Cichewicz RH, Kuhn JG, Mooberry SL (2017) Pharmacokinetic analysis and in vivo antitumor efficacy of taccalonolides AF and AJ. J Nat Prod 80(2):409–414. https://doi.org/10.1021/acs.jnatprod.6b00944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schmid N, Bolliger C, Smith LJ, van Gunsteren WF (2008) Disulfide bond shuffling in bovine a-lactalbumin: MD simulation confirms experiment. Biochemistry 47(46):12104–12107. https://doi.org/10.1021/bi8013455

    Article  CAS  PubMed  Google Scholar 

  95. Canales A, Nieto L, Rodríguez-Salarichs J, Sánchez-Murcia PA, Coderch C, Cortés-Cabrera A, Paterson I, Carlomagno T, Gago F, Andreu JM, Altmann KH, Jiménez-Barbero J, Díaz JF (2014) Molecular recognition of epothilones by microtubules and tubulin dimers revealed by biochemical and NMR approaches. ACS Chem Biol 9(4):1033–1043. https://doi.org/10.1021/cb400673h

    Article  CAS  PubMed  Google Scholar 

  96. Swanson JM, Maupin CM, Chen H, Petersen MK, Xu J, Wu Y, Voth GA (2007) Proton solvation and transport in aqueous and biomolecular systems: insights from computer simulations. J Phys Chem B 111(17):4300–4314. https://doi.org/10.1021/jp070104x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Warshel A (2003) Computer simulations of enzyme catalysis: methods, progress, and insights. Annu Rev Biophys Biomol Struct 32:425–443. https://doi.org/10.1146/annurev.biophys.32.110601.141807

    Article  CAS  PubMed  Google Scholar 

  98. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS (2013) Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol 20(2):146–159. https://doi.org/10.1016/j.chembiol.2012.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pettinger J, Jones K, Cheeseman MD (2017) Lysine-targeting covalent inhibitors. Angew Chem Int Ed Engl 56(48):15200–15209. https://doi.org/10.1002/anie.201707630

    Article  CAS  PubMed  Google Scholar 

  100. Holliday GL, Mitchell JB, Thornton JM (2009) Understanding the functional roles of amino acid residues in enzyme catalysis. J Mol Biol 390(3):560–577. https://doi.org/10.1016/j.jmb.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  101. Coderch C, Tang Y, Klett J, Zhang SE, Ma YT, Shaorong W, Matesanz R, Pera B, Canales A, Jiménez-Barbero J, Morreale A, Díaz JF, Fang WS, Gago F (2013) A structure-based design of new C2- and C13-substituted taxanes: tubulin binding affinities and extended quantitative structure-activity relationships using comparative binding energy (COMBINE) analysis. Org Biomol Chem 11(18):3046–3056. https://doi.org/10.1039/c3ob40407b

    Article  CAS  PubMed  Google Scholar 

  102. Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35(7):565–573. https://doi.org/10.1021/ar010054t

    Article  CAS  PubMed  Google Scholar 

  103. Prota AE, Bargsten K, Redondo-Horcajo M, Smith AB 3rd, Yang CH, McDaid HM, Paterson I, Horwitz SB, Fernando Diaz J, Steinmetz MO (2017) Structural basis of microtubule stabilization by discodermolide. ChemBioChem 18(10):905–909. https://doi.org/10.1002/cbic.201600696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mol AR, Castro MS, Fontes W (2018) NetWheels: a web application to create high quality peptide helical wheel and net projections. bioRxiv. https://doi.org/10.1101/416347

    Article  Google Scholar 

  105. Pamula MC, Ti SC, Kapoor TM (2016) The structured core of human b tubulin confers isotype-specific polymerization properties. J Cell Biol 213(4):425–433. https://doi.org/10.1083/jcb.201603050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stengel C, Newman SP, Leese MP, Potter BV, Reed MJ, Purohit A (2010) Class III b-tubulin expression and in vitro resistance to microtubule targeting agents. Br J Cancer 102(2):316–324. https://doi.org/10.1038/sj.bjc.6605489

    Article  CAS  PubMed  Google Scholar 

  107. Ludueña RF, Roach MC (1991) Tubulin sulfhydryl groups as probes and targets for antimitotic and antimicrotubule agents. Pharmacol Ther 49(1–2):133–152

    Article  PubMed  Google Scholar 

  108. Wang W, Zhang H, Wang X, Patterson J, Winter P, Graham K, Ghosh S, Lee JC, Katsetos CD, Mackey JR, Tuszynski JA, Wong GK, Luduena RF (2017) Novel mutations involving bI-, bIIA-, or bIVB-tubulin isotypes with functional resemblance to bIII-tubulin in breast cancer. Protoplasma 254(3):1163–1173. https://doi.org/10.1007/s00709-016-1060-1

    Article  CAS  PubMed  Google Scholar 

  109. Zheng H, Hou J, Zimmerman MD, Wlodawer A, Minor W (2014) The future of crystallography in drug discovery. Expert Opin Drug Discov 9(2):125–137. https://doi.org/10.1517/17460441.2014.872623

    Article  CAS  PubMed  Google Scholar 

  110. Ortiz AR, Pisabarro MT, Gago F (1993) Molecular model of the interaction of bee venom phospholipase A2 with manoalide. J Med Chem 36(13):1866–1879. https://doi.org/10.1021/jm00065a010

    Article  CAS  PubMed  Google Scholar 

  111. Ghomashchi F, Lin Y, Hixon MS, Yu BZ, Annand R, Jain MK, Gelb MH (1998) Interfacial recognition by bee venom phospholipase A2: insights into nonelectrostatic molecular determinants by charge reversal mutagenesis. Biochemistry 37(19):6697–6710. https://doi.org/10.1021/bi972525i

    Article  CAS  PubMed  Google Scholar 

  112. Lee TS, Radak BK, Pabis A, York DM (2013) A new maximum likelihood approach for free energy profile construction from molecular simulations. J Chem Theory Comput 9(1):153–164. https://doi.org/10.1021/ct300703z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Susan L. Mooberry (University of San Antonio, TX, USA) and Prof. Wei-shuo Fang (University of Beijing, China) for encouragement and helpful discussions.

Funding

Financial support from the Spanish Ministerio de Economía y Competitividad (SAF2015-64629-C2-2-R) and PharmaMar S.A.U. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: PAS-M and FG. Conducted experiments: PAS-M, AM, and FG. Contributed new analytic tools: AC-C. Performed data analysis: PAS-M, AM, AC-C, and FG. Wrote the manuscript: PAS-M and FG.

Corresponding author

Correspondence to Federico Gago.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Murcia, P.A., Mills, A., Cortés-Cabrera, Á. et al. Unravelling the covalent binding of zampanolide and taccalonolide AJ to a minimalist representation of a human microtubule. J Comput Aided Mol Des 33, 627–644 (2019). https://doi.org/10.1007/s10822-019-00208-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00208-w

Keywords

Navigation