Skip to main content
Log in

Rational creation and systematic analysis of cervical cancer kinase–inhibitor binding profile

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The kinase-regulatory cell signaling networks play a central role in the pathogenesis of human cervical cancer (hCC). However, only few kinase inhibitors have been successfully developed for treatment of this cancer to date. Considering that the active sites of protein kinases are highly conserved and small-molecule inhibitors should generally exhibit high promiscuity and broad specificity across the hCC-related kinase array, it is supposed that the established kinase targets of hCC can be targeted unexpectedly by certain noncognate kinase inhibitors. This provides a novel idea to practice the new uses for old drugs in anti-cancer chemotherapy. Here, we create a systematic kinase–inhibitor binding profile in a high-throughput manner by molecular docking and consensus scoring, where the kinases have been collected as therapeutic targets of hCC and the inhibitors are reversible, ATP-competitive and readily available. The docking/scoring scheme is tested rigorously with structure-solved and affinity-known kinase–inhibitor complex samples, which is later demonstrated to be effective in inferring unexpected inhibitor response to hCC-related kinases. Few promising kinase–inhibitor pairs are identified from the profile and tested experimentally at cellular and molecular levels. It is found that the kinase–inhibitor promiscuity is a common phenomenon but only few can interaction effectively and inhibit potently. In addition, the high-scoring inhibitors generally exhibit good suppressing potency on hCC cell viability as compared to those low-scoring ones, imparting that the created profile can well reflect the tumor cytotoxicity of noncognate kinase inhibitors. A further kinase assay suggests that the ErbB family kinases are the potential targets of these high-scoring inhibitors, with noncognate inhibitory activity up to nanomolar level. Structure analysis reveals that the nonbonded interactions of potent noncogante kinase–inhibitor binding can divided into a polar tail and a nonpolar lobe, which confer specificity and stability to the binding, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shchemelinin I, Sefc L, Necas E (2006) Protein kinases, their function and implication in cancer and other diseases. Folia Biol 52:81–100

    CAS  Google Scholar 

  2. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  3. Roskoski R (2015) A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol Res 100:1–23

    Article  CAS  PubMed  Google Scholar 

  4. Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 17:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vu M, Yu J, Awolude OA, Chuang L (2018) Cervical cancer worldwide. Curr Probl Cancer 42:457–465

    Article  PubMed  Google Scholar 

  6. Liu S, Hao X, Ouyang X, Dong X, Yang Y, Yu T, Hu J, Hu L (2016) Tyrosine kinase LYN is an oncotarget in human cervical cancer: a quantitative proteomic based study. Oncotarget 7:75468–75481

    PubMed  PubMed Central  Google Scholar 

  7. Qiu H, Li J, Liu Q, Tang M, Wang Y (2018) Apatinib, a novel tyrosine kinase inhibitor, suppresses tumor growth in cervical cancer and synergizes with Paclitaxel. Cell Cycle 17:1235–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee CM, Fuhrman CB, Planelles V, Peltier MR, Gaffney DK, Soisson AP, Dodson MK, Tolley HD, Green CL, Zempolich KA (2006) Phosphatidylinositol 3-kinase inhibition by LY294002 radiosensitizes human cervical cancer cell lines. Clin Cancer Res 12:250–256

    Article  CAS  PubMed  Google Scholar 

  9. Taylor SS, Radzio-Andzelm E (1994) Three protein kinase structures define a common motif. Structure 2:345–355

    Article  CAS  PubMed  Google Scholar 

  10. Chong CR, Sullivan DJ (2007) New uses for old drugs. Nature 448:645–646

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Q, Chen J, Wu X, Jin X, Ruan B (2014) Repurposing of kinase inhibitors to target c-Abl as potential therapeutics for Alzheimer’s disease. J Pharm Innov 9:331–340

    Article  Google Scholar 

  12. Zhu LX, Liu Q, Hua YF, Yang N, Zhang XG, Ding X (2019) Systematic profiling and evaluation of structure-based kinase-inhibitor interactome in cervical cancer by integrating in silico analyses and in vitro assays at molecular and cellular levels. Comput Biol Chem 80:324–332

    Article  CAS  PubMed  Google Scholar 

  13. Zhao L, Huang Q, Tian S, Ge J, Zhu H, Dong Q (2019) Integrative identification of unexpected kinase-inhibitor interactions in the MAPK-mediated proliferation and differentiation of Mc3T3-E1 osteoblasts. Gen Physiol Biophys 38:1–13

    Article  PubMed  Google Scholar 

  14. Grueneberg DA, Li W, Davies JE, Sawyer J, Pearlberg J, Harlow E (2018) Kinase requirements in human cells: IV. Differential kinase requirements in cervical and renal human tumor cell lines. Proc Natl Acad Sci USA 105:16490–16495

    Article  Google Scholar 

  15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian F, Zhou P, Kang W, Luo L, Fan X, Yan J, Liang H (2015) The small-molecule inhibitor selectivity between IKKα and IKKβ kinases in NF-κB signaling pathway. J Recept Signal Transduct Res 35:307–318

    Article  CAS  PubMed  Google Scholar 

  18. Chen HF, Pan XL, Wang JW, Kong HM, Fu YM (2014) Protein-drug interactome analysis of SSRI-mediated neurorecovery following stroke. Biosystems 120:1–9

    Article  CAS  PubMed  Google Scholar 

  19. Liu L, Chen X, Liu W, Yu H, Liu F (2019) Statistical analysis and heuristic identification of unexpected interactions from the neurokinase–inhibitor interactome in trigeminal neuralgia pharmacological intervention. J Chemom 33:e3126

    Article  CAS  Google Scholar 

  20. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  21. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735–1747

    Article  CAS  PubMed  Google Scholar 

  22. Ryu J, Lee M, Cha J, Laskowski RA, Ryu SE, Kim DS (2016) BetaSCPWeb: side-chain prediction for protein structures using Voronoi diagrams and geometry prioritization. Nucleic Acids Res 44:W416–W423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo H, Du T, Zhou P, Yang L, Mei H, Ng H, Zhang W, Shu M, Tong W, Shi L, Mendrick DL, Hong H (2015) Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions. Comb Chem High Throughput Screen 18:296–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang C, Wang C, Zhang S, Huang J, Zhou P (2015) Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Mol Simul 41:741–751

    Article  CAS  Google Scholar 

  26. Yang C, Zhang S, He P, Wang C, Huang J, Zhou P (2015) Self-binding peptides: folding or binding. J Chem Inf Model 55:329–342

    Article  CAS  PubMed  Google Scholar 

  27. Yang C, Zhang S, Bai Z, Hou S, Wu D, Huang J, Zhou P (2016) A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol BioSyst 12:1201–1213

    Article  CAS  PubMed  Google Scholar 

  28. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11:905–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang JM, Chen YF, Shen TW, Kristal BS, Hsu DF (2005) Consensus scoring criteria for improving enrichment in virtual screening. J Chem Inf Model 45:1134–1146

    Article  CAS  PubMed  Google Scholar 

  30. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303

    Article  CAS  PubMed  Google Scholar 

  31. Cong L, Xia ZK, Yang RY (2014) Targeting the TGF-β receptor with kinase inhibitors for scleroderma therapy. Arch Pharm 347:609–615

    Article  CAS  Google Scholar 

  32. Huang L, Huang QY, Huang HQ (2014) The evidence of HeLa cell apoptosis induced with tetraethylammonium using proteomics and various analytical methods. J Biol Chem 289:2217–2229

    Article  CAS  PubMed  Google Scholar 

  33. Sun QM, Miao ZH, Lin LP, Gui M, Zhu CH, Xie H, Duan WH, Ding J (2009) BB, a new EGFR inhibitor, exhibits prominent anti-angiogenesis and antitumor activities. Cancer Biol Ther 8:1640–1647

    Article  CAS  PubMed  Google Scholar 

  34. Zhou P, Yang C, Ren Y, Wang C, Tian F (2013) What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chem 141:2967–2973

    Article  CAS  PubMed  Google Scholar 

  35. Zhou P, Wang C, Tian F, Ren Y, Yang C, Huang J (2013) Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J Comput Aided Mol Des 27:67–78

    Article  CAS  PubMed  Google Scholar 

  36. Gaieb Z, Liu S, Gathiaka S, Chiu M, Yang H, Shao C, Feher VA, Walters WP, Kuhn B, Rudolph MG, Burley SK, Gilson MK, Amaro RE (2018) D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies. J Comput Aided Mol Des 32:1–20

    Article  CAS  PubMed  Google Scholar 

  37. Wang B, Shen W, Yang H, Shen J, Sun T (2014) Targeting EGFR mutants with non-cognate kinase inhibitors in non-small cell lung cancer. Med Chem Res 23:4510–4530

    Article  CAS  Google Scholar 

  38. Cui YH, Chen J, Xu T, Tian HL (2015) Structure-based grafting and identification of kinase-inhibitors to target mTOR signaling pathway as potential therapeutics for glioblastoma. Comput Biol Chem 54:57–65

    Article  CAS  PubMed  Google Scholar 

  39. Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47:2977–2980

    Article  CAS  PubMed  Google Scholar 

  40. Hill AD, Reilly PJ (2015) Scoring functions for AutoDock. Methods Mol Biol 1273:467–474

    Article  CAS  PubMed  Google Scholar 

  41. Bai Z, Hou S, Zhang S, Li Z, Zhou P (2017) Targeting self-binding peptides as a novel strategy to regulate protein activity and function: a case study on the proto-oncogene tyrosine protein kinase c-Src. J Chem Inf Model 57:835–845

    Article  CAS  PubMed  Google Scholar 

  42. Zhou P, Hou S, Bai Z, Li Z, Wang H, Chen Z, Meng Y (2018) Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Artif Cells Nanomed Biotechnol 46:1122–1131

    Article  CAS  PubMed  Google Scholar 

  43. Li Z, Yan F, Miao Q, Meng Y, Wen L, Jiang Q, Zhou P (2019) Self-binding peptides: binding-upon-folding versus folding-upon-binding. J Theor Biol 469:25–34

    Article  CAS  PubMed  Google Scholar 

  44. Meng L, Huang Z (2018) In silico-in vitro discovery of untargeted kinase-inhibitor interactions from kinase-targeted therapies: a case study on the cancer MAPK signaling pathway. Comput Biol Chem 75:196–204

    Article  CAS  PubMed  Google Scholar 

  45. Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513:481–483

    Article  CAS  PubMed  Google Scholar 

  46. Soonthornthum T, Arias-Pulido H, Joste N, Lomo L, Muller C, Rutledge T, Verschraegen C (2011) Epidermal growth factor receptor as a biomarker for cervical cancer. Ann Oncol 22:2166–2178

    Article  CAS  PubMed  Google Scholar 

  47. Sequist LV, Besse B, Lynch TJ, Miller VA, Wong KK, Gitlitz B, Eaton K, Zacharchuk C, Freyman A, Powell C, Ananthakrishnan R, Quinn S, Soria JC (2010) Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer. J Clin Oncol 28:3076–3083

    Article  CAS  PubMed  Google Scholar 

  48. Ono M, Hirata A, Kometani T, Miyagawa M, Ueda S, Kinoshita H, Fujii T, Kuwano M (2004) Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. Mol Cancer Ther 3:465–472

    CAS  PubMed  Google Scholar 

  49. Zhou P, Zhang S, Wang Y, Yang C, Huang J (2016) Structural modeling of HLA-B*1502 peptide carbamazepine T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome toxic epidermal necrolysis. J Biomol Struct Dyn 34:1806–1817

    Article  CAS  PubMed  Google Scholar 

  50. Li Z, Miao Q, Yan F, Meng Y, Zhou P (2019) Machine learning in quantitative protein-peptide affinity prediction: implications for therapeutic peptide design. Curr Drug Metab 20:170–176

    Article  CAS  PubMed  Google Scholar 

  51. Zhou P, Miao Q, Yan F, Li Z, Jiang Q, Wen L, Meng Y (2019) Is protein context responsible for peptide-mediated interactions? Mol Omics. https://doi.org/10.1039/c9mo00041k

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yu H, Zhou P, Deng M, Shang Z (2014) Indirect readout in protein–peptide recognition: a different story from classical biomolecular recognition. J Chem Inf Model 54:2022–2032

    Article  CAS  PubMed  Google Scholar 

  53. Jubb HC, Higueruelo AP, Ochoa-Montaño B, Pitt WR, Ascher DB, Blundell TL (2017) Arpeggio: a web server for calculating and visualizing interatomic interactions in protein structures. J Mol Biol 429:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the JFPH Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 498 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Sun, D. Rational creation and systematic analysis of cervical cancer kinase–inhibitor binding profile. J Comput Aided Mol Des 33, 689–698 (2019). https://doi.org/10.1007/s10822-019-00211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00211-1

Keywords

Navigation