Skip to main content
Log in

A computational study of the molecular basis of antibiotic resistance in a DXR mutant

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Proteins of the independent mevalonate pathway for isoprenoid biosynthesis are important targets for the development of new antibacterial compounds as this pathway is present in most pathogenic organisms such as Mycobacterium tuberculosis, dPlasmodium falciparum and Escherichia coli, but is not present in mammalian species, including humans. Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is an important target in this pathway and the most effective DXR inhibitor to date is fosmidomycin, which is used to treat malaria and, more recently, tuberculosis. Recently, Armstrong C. M. et al. showed that a mutant of DXR, S222T, induces a loss of the fosmidomycin inhibition efficiency, even though the bacteria culture is still viable and able to produce isoprenoids. As this represents a potential fosmidomycin-resistant mutation, it is important to understand the mechanism of this apparent mutation-induced resistance to fosmidomycin. Here, we used molecular dynamics simulations and Molecular Mechanics/Poisson Boltzmann Surface Area analysis to understand the structural and energetic basis of the resistance. Our results suggest that the point mutation results in changes to the structural dynamics of an active site loop that probably protects the active site and facilitates enzymatic reaction. From the simulation analysis, we also showed that the mutation results in changes in the interaction energy profiles in a way that can explain the observed activity of the mutant protein toward the natural inhibitor deoxy-d-xylulose 5-phosphate. These results should be taken into consideration in future efforts to develop new therapeutic antibiotic compounds that target DXR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blair JM et al (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51

    CAS  PubMed  Google Scholar 

  2. Kuntz L et al (2005) Isoprenoid biosynthesis as a target for antibacterial and antiparasitic drugs: phosphonohydroxamic acids as inhibitors of deoxyxylulose phosphate reducto-isomerase. Biochem J 386:127–135

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu W et al (2013) Antibacterial drug leads targeting isoprenoid biosynthesis. Proc Natl Acad Sci USA 110(1):123–128

    CAS  PubMed  Google Scholar 

  4. Zhao LS et al (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16(5):565–574

    CAS  PubMed  Google Scholar 

  6. Rohmer M et al (1993) Isoprenoid biosynthesis in bacteria—a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rohmer M et al (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118(11):2564–2566

    CAS  Google Scholar 

  8. Rodriguez-Concepion M (2004) The MEP pathway: A new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des 10(19):2391–2400

    Google Scholar 

  9. Oldfield E (2010) Targeting isoprenoid biosynthesis for drug Discovery: bench to bedside. Acc Chem Res 43(9):1216–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Argyrou A, Blanchard JS (2004) Kinetic and chemical mechanism of mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate isomeroreductase. Biochemistry 43(14):4375–4384

    CAS  PubMed  Google Scholar 

  11. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mac Sweeney A, et al. (2005) The crystal structure of E.coli 1-deoxy-D-xylulose-5-phosphate reductoisomerase in a ternary complex with the antimalarial compound fosmidomycin and NADPH reveals a tight-binding closed enzyme conformation. J Mol Biol 345(1), 115–127.

    CAS  PubMed  Google Scholar 

  13. Henriksson LM et al (2007) Structures of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate reductoisomerase provide new insights into catalysis. J Biol Chem 282(27):19905–19916

    CAS  PubMed  Google Scholar 

  14. Williams SL, Andrew McCammon J (2009) Conformational dynamics of the flexible catalytic loop in Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Chem Biol Drug Des 73(1):26–38

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Manhas A et al (2019) Identification of natural compound inhibitors against PfDXR: a hybrid structure-based molecular modeling approach and molecular dynamics simulation studies. J Cell Biochem 120(9):14531–14543

    CAS  PubMed  Google Scholar 

  16. Kuzuyama T et al (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39(43):7913–7916

    CAS  Google Scholar 

  17. Okuhara M, et al. (1980) Studies on new phosphonic acid antibiotics.1. Fr-900098, isolation and characterization. J Antibiot 33(1), 13–17.

    CAS  PubMed  Google Scholar 

  18. Koppisch AT et al (2002) E-coli MEP synthase: steady-state kinetic analysis and substrate binding. Biochemistry 41(1):236–243

    CAS  PubMed  Google Scholar 

  19. Zingle C et al (2010) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: structural variations around phosphonate anchor and spacer of fosmidomycin, a potent inhibitor of deoxyxylulose phosphate reductoisomerase. J Org Chem 75(10):3203–3207

    CAS  PubMed  Google Scholar 

  20. Jackson ER, Dowd CS (2012) Inhibition of 1-Deoxy-d-Xylulose-5-Phosphate reductoisomerase (Dxr): a review of the synthesis and biological evaluation of recent inhibitors. Curr Top Med Chem 12(7):706–728

    CAS  PubMed  Google Scholar 

  21. Kuemmerle HP, Murakawa T, De Santis F (1987) Pharmacokinetic evaluation of fosmidomycin, a new phosphonic acid antibiotic. Chemioterapia 6(2):113–119

    CAS  PubMed  Google Scholar 

  22. Brown AC, Parish T (2008) Dxr is essential in Mycobacterium tuberculosis and fosmidomycin resistance is due to a lack of uptake. BMC Microbiol 8(1):78

    PubMed  PubMed Central  Google Scholar 

  23. Kojo H, Shigi Y, Nishida M (1980) FR-31564, a new phosphonic acid antibiotic: bacterial resistance and membrane permeability. J Antibiot (Tokyo) 33(1):44–48

    CAS  Google Scholar 

  24. Martinez JL, Baquero F (2000) Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother 44(7):1771–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Armstrong CM et al (2015) Resistance to the antimicrobial agent fosmidomycin and an FR900098 prodrug through mutations in the deoxyxylulose phosphate reductoisomerase gene (dxr). Antimicrob Agents Chemother 59(9):5511–5519

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kollman PA et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    CAS  PubMed  Google Scholar 

  27. Lafont V et al (2007) Protein–protein recognition and interaction hot spots in an antigen-antibody complex: free energy decomposition identifies "efficient amino acids". Proteins 67(2):418–434

    CAS  PubMed  Google Scholar 

  28. Perez-Gil J et al (2012) Crystal structure of Brucella abortus deoxyxylulose-5-phosphate reductoisomerase-like (DRL) enzyme involved in isoprenoid biosynthesis. J Biol Chem 287(19):15803–15809

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gagne D et al (2015) Perturbation of the conformational dynamics of an active-site loop alters enzyme activity. Structure 23(12):2256–2266

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Berlow RB, Loria JP (2009) Role of loop-loop interactions in coordinating motions and enzymatic function in triosephosphate isomerase. Biochemistry 48(21):4548–4556

    CAS  PubMed  Google Scholar 

  31. Zhang Z, et al. (1994) Crystal structure of recombinant chicken triosephosphate isomerase-phosphoglycolohydroxamate complex at 1.8-A resolution. Biochemistry 33(10), 2830–2837.

    CAS  PubMed  Google Scholar 

  32. Browning C et al (2007) Critical role of desolvation in the binding of 20-hydroxyecdysone to the ecdysone receptor. J Biol Chem 282(45):32924–32934

    CAS  PubMed  Google Scholar 

  33. Moroy G et al (2009) Molecular basis for Bcl-2 homology 3 domain recognition in the Bcl-2 protein family: identification of conserved hot spot interactions. J Biol Chem 284(26):17499–17511

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zanier K et al (2013) Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Science 339(6120):694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilcoxon F (1945) Individual Comparisons by Ranking Methods. Biom Bull 1(6):80–83

    Google Scholar 

  36. Chen VB et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(Pt 1):12–21

    CAS  PubMed  Google Scholar 

  37. Eswar N et al (2006) Comparative protein structure modeling using modeller. Curr Protoc Bioinform 15(1):5–6

    Google Scholar 

  38. Hanwell MD et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1):17

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Morris GM et al (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen D et al (2007) Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Proteins 67(3):593–605

    CAS  PubMed  Google Scholar 

  41. MacKerell ADJ et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem 102:3586–3616

    CAS  Google Scholar 

  42. Vanommeslaeghe K et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vanommeslaeghe, K. and A.D.J. MacKerell. Available from: https://cgenff.paramchem.org.

  44. Mayne CG et al (2013) Rapid parameterization of small molecules using the force field toolkit. J Comput Chem 34(32):2757–2770

    CAS  PubMed  Google Scholar 

  45. Frisch, M.J., et al., Gaussian 09 Rev. A.02. 2016: Wallingford, CT.

  46. Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 26:1781–1802

    Google Scholar 

  47. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    CAS  Google Scholar 

  49. Basconi JE, Shirts MR (2013) Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J Chem Theory Comput 9(7):2887–2899

    CAS  PubMed  Google Scholar 

  50. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  51. Genheden S, Ryde U (2010) How to Obtain Statistically Converged MM/GBSA Results. J Comput Chem 31(4):837–846

    CAS  PubMed  Google Scholar 

  52. Radykewicz T et al (2000) Biosynthesis of terpenoids: 1-deoxy-d-xylulose-5-phosphate reductoisomerase from Escherichia coli is a class B dehydrogenase. FEBS Lett 465(2–3):157–160

    CAS  PubMed  Google Scholar 

  53. Fox DT, Poulter CD (2005) Mechanistic studies with 2-C-methyl-D-erythritol 4-phosphate synthase from Escherichia coli. Biochemistry 44(23):8360–8368

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Centre National de Recherche Scientifique (CNRS), Institut National de La Santé et de La Recherche Médicale (INSERM), Université de Strasbourg, the Agence Nationale de la Recherche (ANR), and by the Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation. Computing resources were provided by the Institut du Développement et des Ressources en Informatique Scientifique (IDRIS), the Centre Informatique National de l’Enseignement Supérieur (CINES) and the Méso-centre de Calcul de l’Université de Strasbourg supported by the national Equipex project EQUIP@ MESO. The authors thank L. Bianchetti for his help in the statistical analysis of the MM/PBSA results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland H. Stote.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krebs, F.S., Esque, J. & Stote, R.H. A computational study of the molecular basis of antibiotic resistance in a DXR mutant. J Comput Aided Mol Des 33, 927–940 (2019). https://doi.org/10.1007/s10822-019-00229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00229-5

Keywords

Navigation