Skip to main content

Advertisement

Log in

Computational methods and tools for binding site recognition between proteins and small molecules: from classical geometrical approaches to modern machine learning strategies

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In the current “genomic era” the number of identified genes is growing exponentially. However, the biological function of a large number of the corresponding proteins is still unknown. Recognition of small molecule ligands (e.g., substrates, inhibitors, allosteric regulators, etc.) is pivotal for protein functions in the vast majority of the cases and knowledge of the region where these processes take place is essential for protein function prediction and drug design. In this regard, computational methods represent essential tools to tackle this problem. A significant number of software tools have been developed in the last few years which exploit either protein sequence information, structure information or both. This review describes the most recent developments in protein function recognition and binding site prediction, in terms of both freely-available and commercial solutions and tools, detailing the main characteristics of the considered tools and providing a comparative analysis of their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Liolios K (2006) The genomes on line database (GOLD) vol 2: a monitor of genome projects worldwide. Nucleic Acids Res 34:D332–D334. https://doi.org/10.1093/nar/gkj145

    Article  CAS  PubMed  Google Scholar 

  2. Mills CL, Beuning PJ, Ondrechen MJ (2015) Biochemical functional predictions for protein structures of unknown or uncertain function. Comput Struct Biotechnol J 13:182–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murakami Y, Tripathi LP, Prathipati P (2017) Network analysis and in silico prediction of protein–protein interactions with applications in drug discovery. Curr Opin Struct Biol 44:134–142. https://doi.org/10.1016/J.SBI.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  4. Roche DB, Brackenridge DA, McGuffin LJ (2015) Proteins and their interacting partners: an introduction to protein-ligand binding site prediction methods. Int J Mol Sci 16:29829–29842. https://doi.org/10.3390/ijms161226202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ehrt C, Brinkjost T, Koch O (2018) A benchmark driven guide to binding site comparison: an exhaustive evaluation using tailor-made data sets (ProSPECCTs). PLoS Comput Biol 14:e1006483. https://doi.org/10.1371/journal.pcbi.1006483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Illergård K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence: a study of structural response in protein cores. Proteins Struct Funct Bioinform 77:499–508. https://doi.org/10.1002/prot.22458

    Article  CAS  Google Scholar 

  7. Zhang QC, Petrey D, Deng L et al (2012) Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 490:556–560. https://doi.org/10.1038/nature11503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Somody JC, MacKinnon SS, Windemuth A (2017) Structural coverage of the proteome for pharmaceutical applications. Drug Discov Today 22:1792–1799

    Article  CAS  PubMed  Google Scholar 

  9. Khafizov K, Madrid-Aliste C, Almo SC, Fiser A (2014) Trends in structural coverage of the protein universe and the impact of the protein structure initiative. Proc Natl Acad Sci USA 111:3733–3738. https://doi.org/10.1073/pnas.1321614111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang LW, Bahar I (2005) Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Structure 13:893–904. https://doi.org/10.1016/j.str.2005.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J. https://doi.org/10.1186/1752-153X-1-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yu J, Zhou Y, Tanaka I, Yao M (2009) Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 26:46–52. https://doi.org/10.1093/bioinformatics/btp599

    Article  CAS  PubMed  Google Scholar 

  13. Delaunay B (1934) Sur la sphere vide. Bull Acad Sci l’URSS 6:793–800. https://doi.org/10.1051/jphysrad:01951001207073500

    Article  Google Scholar 

  14. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinform 10:1–11. https://doi.org/10.1186/1471-2105-10-168

    Article  Google Scholar 

  15. Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol. https://doi.org/10.1186/1472-6807-6-19

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dias SED, Nguyen QT, Jorge JA, Gomes AJP (2017) Multi-GPU-based detection of protein cavities using critical points. Future Gener Comput Syst. https://doi.org/10.1016/j.future.2016.07.009

    Article  Google Scholar 

  17. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897. https://doi.org/10.1002/pro.5560070905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22:469–483. https://doi.org/10.1145/235815.235821

    Article  Google Scholar 

  19. Milnor J (1963) Morse theory. Princeton University Press, Princeton

    Book  Google Scholar 

  20. Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with CUDA. AMC Queue 6:40–53. https://doi.org/10.1145/1365490.1365500

    Article  Google Scholar 

  21. Berman HM (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dessailly BH, Lensink MF, Orengo CA, Wodak SJ (2008) LigASite: a database of biologically relevant binding sites in proteins with known apo-structures. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm839

    Article  PubMed  Google Scholar 

  23. Laurie ATR, Jackson RM (2006) Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7:395–406. https://doi.org/10.2174/138920306778559386

    Article  CAS  PubMed  Google Scholar 

  24. Tsujikawa H, Sato K, Wei C et al (2016) Development of a protein–ligand-binding site prediction method based on interaction energy and sequence conservation. J Struct Funct Genom 17:39–49. https://doi.org/10.1007/s10969-016-9204-2

    Article  CAS  Google Scholar 

  25. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. https://doi.org/10.1093/nar/gkl842

    Article  PubMed  PubMed Central  Google Scholar 

  27. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ravindranath PA, Sanner MF (2016) AutoSite: an automated approach for pseudo-ligands prediction: from ligand-binding sites identification to predicting key ligand atoms. Bioinformatics 32:3142–3149. https://doi.org/10.1093/bioinformatics/btw367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Proc 2nd Int Conf Knowl Discov Data Min, pp 226–231

  30. Hartshorn MJ, Verdonk ML, Chessari G et al (2007) Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 50:726–741. https://doi.org/10.1021/jm061277y

    Article  CAS  PubMed  Google Scholar 

  31. Dey F, Zhang QC, Petrey D, Honig B (2013) Toward a “structural BLAST”: using structural relationships to infer function. Protein Sci 22:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagano N, Orengo CA, Thornton JM (2002) One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J Mol Biol 321:741–765

    Article  CAS  PubMed  Google Scholar 

  33. Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJE (2007) Convergent evolution of enzyme active sites is not a rare phenomenon. J Mol Biol 372:817–845. https://doi.org/10.1016/j.jmb.2007.06.017

    Article  CAS  PubMed  Google Scholar 

  34. Totrov M (2011) Ligand binding site superposition and comparison based on Atomic Property Fields: identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-S1-S35

    Article  Google Scholar 

  35. Barelier S, Sterling T, O’Meara MJ, Shoichet BK (2015) The recognition of identical ligands by unrelated proteins. ACS Chem Biol 10:2772–2784. https://doi.org/10.1021/acschembio.5b00683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caprari S, Toti D, Viet Hung L et al (2014) ASSIST: a fast versatile local structural comparison tool. Bioinformatics 30:1022–1024. https://doi.org/10.1093/bioinformatics/btt664

    Article  CAS  PubMed  Google Scholar 

  37. Viet Hung L, Caprari S, Bizai M et al (2015) LIBRA: ligand binding site recognition application. Bioinformatics 31:4020–4022. https://doi.org/10.1093/bioinformatics/btv489

    Article  CAS  Google Scholar 

  38. Moraes JPA, Pappa GL, Pires DEV, Izidoro SC (2017) GASS-WEB: a web server for identifying enzyme active sites based on genetic algorithms. Nucleic Acids Res 45:W315–W319. https://doi.org/10.1093/nar/gkx337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roy A, Yang J, Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. https://doi.org/10.1093/nar/gks372

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hwang H, Dey F, Petrey D, Honig B (2017) Structure-based prediction of ligand-protein interactions on a genome-wide scale. Proc Natl Acad Sci USA 114:13685–13690. https://doi.org/10.1073/pnas.1705381114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou H, Skolnick J (2013) FINDSITEcomb: a threading/structure-based, proteomic-scale virtual ligand screening approach. J Chem Inf Model 53:230–240. https://doi.org/10.1021/ci300510n

    Article  CAS  PubMed  Google Scholar 

  42. Roche DB, Buenavista MT, McGuffin LJ (2013) The FunFOLD2 server for the prediction of protein-ligand interactions. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt498

    Article  PubMed  PubMed Central  Google Scholar 

  43. Toti D, Viet Hung L, Tortosa V et al (2018) LIBRA-WA: a web application for ligand binding site detection and protein function recognition. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx715

    Article  PubMed  Google Scholar 

  44. Toti D, Macari G, Polticelli F (2018) Protein-ligand binding site detection as an alternative route to molecular docking and drug repurposing. Bio-Algorithms Med-Syst. https://doi.org/10.1515/bams-2018-0004

    Article  Google Scholar 

  45. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Furnham N, Holliday GL, De Beer TAP et al (2014) The Catalytic Site Atlas 2.0: Cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt1243

    Article  PubMed  PubMed Central  Google Scholar 

  47. Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Oper Res Lett 9:375–382. https://doi.org/10.1016/0167-6377(90)90057-C

    Article  Google Scholar 

  48. Petrey D, Honig B (2003) GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. Methods Enzymol 374:492–509

    Article  CAS  PubMed  Google Scholar 

  49. Zhang C, Freddolino PL, Zhang Y (2017) COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res 45:W291–W299. https://doi.org/10.1093/nar/gkx366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huntley RP, Sawford T, Mutowo-Meullenet P et al (2015) The GOA database: gene ontology annotation updates for 2015. Nucleic Acids Res 43:D1057–D1063. https://doi.org/10.1093/nar/gku1113

    Article  CAS  PubMed  Google Scholar 

  51. Yang J, Roy A, Zhang Y (2013) BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res. https://doi.org/10.1093/nar/gks966

    Article  PubMed  PubMed Central  Google Scholar 

  52. Metropolis N (1987) The beginning of the Monte Carlo method. Los Alamos Sci 15:125–130. https://doi.org/10.1128/JCM.05092-11

    Article  CAS  Google Scholar 

  53. Tanimoto TT (1958) Elementary mathematical theory of classification and prediction. International Business Machines Corporation, Armonk

    Google Scholar 

  54. Izidoro SC, De Melo-Minardi RC, Pappa GL (2015) GASS: identifying enzyme active sites with genetic algorithms. Bioinformatics 31:864–870. https://doi.org/10.1093/bioinformatics/btu746

    Article  CAS  PubMed  Google Scholar 

  55. Madej T, Lanczycki CJ, Zhang D et al (2014) MMDB and VAST+ : tracking structural similarities between macromolecular complexes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt1208

    Article  PubMed  Google Scholar 

  56. Capra JA, Singh M (2007) Predicting functionally important residues from sequence conservation. Bioinformatics 23:1875–1882. https://doi.org/10.1093/bioinformatics/btm270

    Article  CAS  PubMed  Google Scholar 

  57. Yang J, Roy A, Zhang Y (2013) Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595. https://doi.org/10.1093/bioinformatics/btt447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Najmanovich RJ (2017) Evolutionary studies of ligand binding sites in proteins. Curr Opin Struct Biol 45:85–90

    Article  CAS  PubMed  Google Scholar 

  59. Pai PP, Dattatreya RK, Mondal S et al (2017) Ensemble architecture for prediction of enzyme-ligand binding residues using evolutionary information. Mol Inform 36:1–10. https://doi.org/10.1002/minf.201700021

    Article  CAS  Google Scholar 

  60. Fang C, Noguchi T, Yamana H (2013) SCPSSMpred: a general sequence-based method for ligand-binding site prediction. IPSJ Trans Bioinform 6:35–42. https://doi.org/10.2197/ipsjtbio.6.35

    Article  Google Scholar 

  61. Asmita S, Shukla KK (2014) Review on the architecture, algorithm and fusion strategies in ensemble learning. Int J Comput Appl 108:975–8887

    Google Scholar 

  62. Chen P, Huang JZ, Gao X (2014) LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone. BMC Bioinform 15:S4. https://doi.org/10.1186/1471-2105-15-S15-S4

    Article  Google Scholar 

  63. Kawashima S, Kanehisa M (2000) AAindex: amino acid index database. Nucleic Acids Res 28:374. https://doi.org/10.1093/nar/28.1.374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petrey D, Chen TS, Deng L et al (2015) Template-based prediction of protein function. Curr Opin Struct Biol 32:33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gallo Cassarino T, Bordoli L, Schwede T (2014) Assessment of ligand binding site predictions in CASP10. Proteins Struct Funct Bioinforma 82:154–163. https://doi.org/10.1002/prot.24495

    Article  CAS  Google Scholar 

  66. Huang B (2009) MetaPocket: a meta approach to improve protein ligand binding site prediction. Omi A J Integr Biol 13:325–330. https://doi.org/10.1089/omi.2009.0045

    Article  CAS  Google Scholar 

  67. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. https://doi.org/10.1093/nar/gki414

    Article  PubMed  PubMed Central  Google Scholar 

  68. Brady GP, Stouten PFW (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401. https://doi.org/10.1023/A:1008124202956

    Article  CAS  PubMed  Google Scholar 

  69. Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13:323–330. https://doi.org/10.1016/0263-7855(95)00073-9

    Article  CAS  PubMed  Google Scholar 

  70. Laurie ATR, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916. https://doi.org/10.1093/bioinformatics/bti315

    Article  CAS  PubMed  Google Scholar 

  71. Kawabata T (2010) Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins Struct Funct Bioinform 78:1195–1211. https://doi.org/10.1002/prot.22639

    Article  CAS  Google Scholar 

  72. Capra JA, Laskowski RA, Thornton JM et al (2009) Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000585

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hubbard SJ, Thornton JM (1993) NACCESS. University College London, London

    Google Scholar 

  74. Wu Q, Peng Z, Zhang Y, Yang J (2018) COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic Acids Res 46:W438–W442. https://doi.org/10.1093/nar/gky439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc Natl Acad Sci USA 105:129–134. https://doi.org/10.1073/pnas.0707684105

    Article  PubMed  Google Scholar 

  76. McGuffin LJ, Atkins JD, Salehe BR et al (2015) IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Res 43:W169–W173. https://doi.org/10.1093/nar/gkv236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McGuffin LJ, Roche DB (2011) Automated tertiary structure prediction with accurate local model quality assessment using the IntFOLD-TS method. Proteins 79(Suppl 1):137–146. https://doi.org/10.1002/prot.23120

    Article  PubMed  Google Scholar 

  78. Roche DB, Buenavista MT, McGuffin LJ (2012) FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions. PLoS ONE. https://doi.org/10.1371/journal.pone.0038219

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309. https://doi.org/10.1093/nar/gki524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schmidt T, Haas J, Cassarino TG, Schwede T (2011) Assessment of ligand-binding residue predictions in CASP9. Proteins Struct Funct Bioinforma 79:126–136. https://doi.org/10.1002/prot.23174

    Article  Google Scholar 

  81. Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learning for computational biology. Mol Syst Biol 12:878

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang Y, Qiao S, Ji S, Zhou J (2018) ENSEMBLE-CNN: predicting DNA binding sites in protein sequences by an ensemble deep learning method. Springer, Cham, pp 301–306

    Google Scholar 

  83. Ismail HD, Jones A, Kim JH et al (2016) RF-Phos: a novel general phosphorylation site prediction tool based on random forest. Biomed Res Int 2016:3281590. https://doi.org/10.1155/2016/3281590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu D-J, Hu J, Yang J et al (2013) Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering. IEEE/ACM Trans Comput Biol Bioinform 10:994–1008. https://doi.org/10.1109/TCBB.2013.104

    Article  CAS  PubMed  Google Scholar 

  85. Longadge MR, Snehlata M, Dongre S, Latesh Malik D (2013) Class imbalance problem in data mining: review. Int J Comput Sci Netw. https://www.ijcsn.org

  86. Jian J-W, Elumalai P, Pitti T et al (2016) Predicting ligand binding sites on protein surfaces by 3-dimensional probability density distributions of interacting atoms. PLoS ONE 11:e0160315. https://doi.org/10.1371/journal.pone.0160315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Krivák R, Hoksza D (2018) P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J Cheminform 10:39. https://doi.org/10.1186/s13321-018-0285-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jiménez J, Doerr S, Martínez-Rosell G et al (2017) DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 33:3036–3042. https://doi.org/10.1093/bioinformatics/btx350

    Article  CAS  PubMed  Google Scholar 

  89. Schmidtke P, Souaille C, Estienne F et al (2010) Large-scale comparison of four binding site detection algorithms. J Chem Inf Model 50:2191–2200. https://doi.org/10.1021/ci1000289

    Article  CAS  PubMed  Google Scholar 

  90. Schmitt S, Kuhn D, Klebe G (2002) A new method to detect related function among proteins independent of sequence and fold homology. J Mol Biol 323:387–406. https://doi.org/10.1016/S0022-2836(02)00811-2

    Article  CAS  PubMed  Google Scholar 

  91. Labute P, Santavy M (2007) Locating binding sites in protein structures. J Chem Comput Gr

  92. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389. https://doi.org/10.1021/ci800324m

    Article  CAS  PubMed  Google Scholar 

  93. Lanka G, Bathula R, Dasari M et al (2019) Structure-based identification of potential novel inhibitors targeting FAM3B (PANDER) causing type 2 diabetes mellitus through virtual screening. J Recept Signal Transduct 39:253–263. https://doi.org/10.1080/10799893.2019.1660897

    Article  CAS  Google Scholar 

  94. Jayaprakash P, Biswal J, Kanagarajan S et al (2019) Design of novel Ph MTNA inhibitors, targeting neurological disorder through homology modeling, molecular docking, and dynamics approaches. J Recept Signal Transduct 39:28–38. https://doi.org/10.1080/10799893.2019.1567786

    Article  CAS  Google Scholar 

  95. Sullivan MV, Dennison SR, Archontis G et al (2019) Toward rational design of selective molecularly imprinted polymers (MIPs) for proteins: computational and experimental studies of acrylamide based polymers for myoglobin. J Phys Chem B 123:5432–5443. https://doi.org/10.1021/acs.jpcb.9b03091

    Article  CAS  PubMed  Google Scholar 

  96. Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15:359–363. https://doi.org/10.1016/S1093-3263(98)00002-3

    Article  CAS  PubMed  Google Scholar 

  97. Cheng AC, Coleman RG, Smyth KT et al (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25:71–75. https://doi.org/10.1038/nbt1273

    Article  CAS  PubMed  Google Scholar 

  98. Liu Z, Li Y, Han L et al (2015) PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31:405–412. https://doi.org/10.1093/bioinformatics/btu626

    Article  CAS  PubMed  Google Scholar 

  99. Skolnick J, Gao M, Roy A et al (2015) Implications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function. Bioorg Med Chem Lett 25:1163–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Garrido-Martín D, Pazos F (2018) Effect of the sequence data deluge on the performance of methods for detecting protein functional residues. BMC Bioinform. https://doi.org/10.1186/s12859-018-2084-7

    Article  Google Scholar 

  101. Skolnick J, Zhou H, Gao M (2013) Are predicted protein structures of any value for binding site prediction and virtual ligand screening? Curr Opin Struct Biol 23:191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dukka BK (2013) Structure-based methods for computational protein functional site prediction. Comput Struct Biotechnol J 8:e201308005. https://doi.org/10.5936/csbj.201308005

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nemoto W, Saito A, Oikawa H (2013) Recent advances in functional region prediction by using structural and evolutionary information: remaining problems and future extensions. Comput Struct Biotechnol J 8:e201308007. https://doi.org/10.5936/csbj.201308007

    Article  PubMed  PubMed Central  Google Scholar 

  104. Roche DB, Tetchner SJ, McGuffin LJ (2011) FunFOLD: an improved automated method for the prediction of ligand binding residues using 3D models of proteins. BMC Bioinform 12:160. https://doi.org/10.1186/1471-2105-12-160

    Article  CAS  Google Scholar 

  105. Desaphy J, Bret G, Rognan D, Kellenberger E (2015) sc-PDB: a 3D-database of ligandable binding sites—10 years on. Nucleic Acids Res 43:D399–D404. https://doi.org/10.1093/nar/gku928

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Italian Ministry of University and Research (MIUR), Grants “Dipartimenti di Eccellenza” (Legge 232/2016, Articolo 1, Comma 314–337) and PRIN (Grant No. 2017483NH8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Polticelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macari, G., Toti, D. & Polticelli, F. Computational methods and tools for binding site recognition between proteins and small molecules: from classical geometrical approaches to modern machine learning strategies. J Comput Aided Mol Des 33, 887–903 (2019). https://doi.org/10.1007/s10822-019-00235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00235-7

Keywords

Navigation