Skip to main content
Log in

Non-zero Lennard-Jones parameters for the Toukan–Rahman water model: more accurate calculations of the solvation free energy of organic substances

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Application of a small radius of the hydrogen atom in molecular-mechanical models of hydrogen bonding improves the estimate of the solvation free energy of organic substances. At the same time, the density and evaporation heat of the bulk water vary slightly and are close to experimental values. Blind testing drug candidates in the SAMPL6 simulation competition showed that using the same Lennard-Jones hydrogen parameters for the hydroxyl, hydroxycarbonyl, amino, and amide groups is enough to predict log P octanol–water with MAE 0.67 and RMSD 0.75.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Image taken with permission from the authors [36]

Fig. 3

Similar content being viewed by others

References

  1. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, p 331

    Chapter  Google Scholar 

  2. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  3. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  4. Toukan K, Rahman A (1985) Molecular-dynamics study of atomic motions in water. Phys Rev B 31:2643–2648

    Article  CAS  Google Scholar 

  5. MDynaMix: a Molecular Dynamics Program http://www.fos.su.se/~sasha/mdynamix/. Accessed 14 Oct 2019

  6. Ascalaph: molecular modeling software http://www.biomolecular-modeling.com/Products.html. Accessed 14 Oct 2019

  7. logP-Prediction Challenge https://drugdesigndata.org/about/sampl6/logp-prediction. Accessed 14 Oct 2019

  8. Abalone: molecular graphics environment http://www.biomolecular-modeling.com/Abalone/index.html. Accessed 14 Oct 2019

  9. Verlet Loup (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  10. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  Google Scholar 

  11. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  12. Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987) Hybrid Monte Carlo. Phys Lett B 195:216–222

    Article  CAS  Google Scholar 

  13. Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990

    Article  CAS  Google Scholar 

  14. Campos CM, Sanz-Serna JM (2015) Extra chance generalized hybrid Monte Carlo. J Comput Phys 281:365–374

    Article  Google Scholar 

  15. Horowitz AM (1991) A generalized guided Monte Carlo algorithm. Phys Lett B 268:247–252

    Article  Google Scholar 

  16. Yakub E, Ronchi C (2003) An efficient method for computation of long-ranged Coulomb forces in computer simulation of ionic fluids. J Chem Phys 119:11556–11560

  17. Article in preparation

  18. Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsov-Velyaminov PN (1992) New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J Chem Phys 96:1776–1783

    Article  CAS  Google Scholar 

  19. Automatic Force Field generator http://www.biomolecular-modeling.com/FF/index.html. Accessed 14 Oct 2019

  20. Nikitin A, Milchevskiy Y, Lyubartsev A (2015) AMBER-ii: new combining rules and force field for perfluoroalkanes. J Phys Chem B 119(46):14563–14573

    Article  CAS  Google Scholar 

  21. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477

    Article  CAS  Google Scholar 

  22. Limasa NG, Manz TA (2016) Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials. RSC Adv 6:45727

    Article  Google Scholar 

  23. De Leeuw SW, Perram JW, Smith ER (1986) Computer simulation of the static dielectric constant of systems with permanent electric dipoles. Ann Rev Phys Chem 37(1):245–270

    Article  CAS  Google Scholar 

  24. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  25. Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  26. Cole DJ, Vilseck JZ, Tirado-Rives J, Payne MC, Jorgensen WL (2016) Biomolecular force field parameterization via atoms-in-molecule electron density partitioning. J Chem Theory Comput 12:2312–2323

    Article  CAS  Google Scholar 

  27. Lorentz HA (1881) Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann Phys 248:127–136

    Article  Google Scholar 

  28. Berthelot D (1898) Sur le mélange des gaz. C R Hebd Seances Acad Sci 126:1703–1855

    Google Scholar 

  29. Waldman M, Hagler AT (1993) New combining rules for rare gas van der Waals parameters. J Comput Chem 14:1077–1084

    Article  CAS  Google Scholar 

  30. Nikitin AM (2018) A non-polarizable three-site water model reproduces the density anomaly of the liquid. ChemistrySelect 3:2017–2020

    Article  CAS  Google Scholar 

  31. Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678

    Article  CAS  Google Scholar 

  32. Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535

    Article  CAS  Google Scholar 

  33. Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq 101:219–260

    Article  CAS  Google Scholar 

  34. Amira S, Spångberg D, Hermansson K (2004) Derivation and evaluation of a flexible SPC model for liquid water. J Chem Phys 303:327–334

    CAS  Google Scholar 

  35. unpublished results

  36. https://www.biorxiv.org/content/10.1101/757393v1. Accessed 14 Oct 2019

Download references

Acknowledgements

The author is grateful to Yuri Kravatsky for providing computer resources. This work has been carried out with the financial support of the Molecular and Cellular Biology Program of the Russian Academy of Sciences under award number 01201456592 and by grant of the Russian Foundation for Basic Research under award number 1804-01376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Nikitin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, A. Non-zero Lennard-Jones parameters for the Toukan–Rahman water model: more accurate calculations of the solvation free energy of organic substances. J Comput Aided Mol Des 34, 437–441 (2020). https://doi.org/10.1007/s10822-019-00256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00256-2

Keywords

Navigation