Skip to main content
Log in

Applicability of a thermodynamic cycle approach for a force field parametrization targeting non-aqueous solvation free energies

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Accurate solvation free energy ΔGsolv predictions require well parametrized force fields. In order to refit Lennard-Jones (LJ) parameters for improved ΔGsolv predictions for a variety of compound classes and chemical environments, a large number of ΔGsolv calculations is required. As the calculation of ΔGsolv is computational expensive, there is need for efficient but precise calculation methods. In this work, we focus on the computation of non-aqueous solvation free energies. We compare ΔGsolv results from highly precise reference simulations for transferring a solute from the vacuum into a condensed phase and results obtained from a thermodynamic cycle implementation. As test systems, we alter LJ parameters ε and σ of widely used GAFF atom types ca, cl, n1, oh and os in various solute/solvent combinations. We examine the degree of configurational space overlap and find an impact by hydrogen bonds and the solvent accessible surface area. We conclude that the application of a thermodynamic cycle for the parametrization of force fields targeting ΔGsolv is useful if the adaptation of LJ parameters is limited to atom types in the solute or if only ε is changed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hansen N, van Gunsteren WF (2014) Practical aspects of free-energy calculations: a review. J Chem Theory Comput 10(7):2632–2647. https://doi.org/10.1021/ct500161f

    Article  CAS  PubMed  Google Scholar 

  2. Klimovich PV, Shirts MR, Mobley DL (2015) Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des 29(5):397–411. https://doi.org/10.1007/s10822-015-9840-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bruckner S, Boresch S (2011) Efficiency of alchemical free energy simulations. I. A practical comparison of the exponential formula, thermodynamic integration, and Bennett’s acceptance ratio method. J Comput Chem 32(7):1303–1319. https://doi.org/10.1002/jcc.21713

    Article  CAS  PubMed  Google Scholar 

  4. Bruckner S, Boresch S (2011) Efficiency of alchemical free energy simulations. II. Improvements for thermodynamic integration. J Comput Chem 32(7):1320–1333. https://doi.org/10.1002/jcc.21712

    Article  CAS  PubMed  Google Scholar 

  5. Parameswaran S, Mobley DL (2014) Box size effects are negligible for solvation free energies of neutral solutes. J Comput Aided Mol Des 28(8):825–829. https://doi.org/10.1007/s10822-014-9766-7

    Article  CAS  PubMed  Google Scholar 

  6. Naden LN, Pham TT, Shirts MR (2014) Linear basis function approach to efficient alchemical free energy calculations. 1. Removal of uncharged atomic sites. J Chem Theory Comput 10(3):1128–1149. https://doi.org/10.1021/ct4009188

    Article  CAS  PubMed  Google Scholar 

  7. Naden LN, Shirts MR (2015) Linear basis function approach to efficient alchemical free energy calculations. 2. Inserting and deleting particles with Coulombic interactions. J Chem Theory Comput 11(6):2536–2549. https://doi.org/10.1021/ct501047e

    Article  CAS  PubMed  Google Scholar 

  8. Mecklenfeld A, Raabe G (2017) Efficient solvation free energy simulations: impact of soft-core potential and a new adaptive λ-spacing method. Mol Phys 115(9–12):1322–1334. https://doi.org/10.1080/00268976.2017.1292008

    Article  CAS  Google Scholar 

  9. Bhati AP, Wan S, Hu Y, Sherborne B, Coveney PV (2018) Uncertainty quantification in alchemical free energy methods. J Chem Theory Comput 14(6):2867–2880. https://doi.org/10.1021/acs.jctc.7b01143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yildirim A, Wassenaar TA, van der Spoel D (2018) Statistical efficiency of methods for computing free energy of hydration. J Chem Phys 149(14):144111. https://doi.org/10.1063/1.5041835

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Tu X, Zhang JZH, Sun Z (2018) BAR-based optimum adaptive sampling regime for variance minimization in alchemical transformation: the nonequilibrium stratification. Phys Chem Chem Phys 20(3):2009–2021. https://doi.org/10.1039/c7cp07573a

    Article  CAS  PubMed  Google Scholar 

  12. Shirts MR, Pande VS (2005) Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys 122(14):144107. https://doi.org/10.1063/1.1873592

    Article  CAS  PubMed  Google Scholar 

  13. Shirts MR (2012) Best practices in free energy calculations for drug design. Methods Mol Biol 819:425–467. https://doi.org/10.1007/978-1-61779-465-0_26

    Article  CAS  PubMed  Google Scholar 

  14. Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114(32):10235–10253. https://doi.org/10.1021/jp102971x

    Article  CAS  PubMed  Google Scholar 

  15. Jambeck JPM, Mocci F, Lyubartsev AP, Laaksonen A (2013) Partial atomic charges and their impact on the free energy of solvation. J Comput Chem 34(3):187–197. https://doi.org/10.1002/jcc.23117

    Article  CAS  PubMed  Google Scholar 

  16. Mecklenfeld A, Raabe G (2017) Comparison of RESP and IPolQ-Mod partial charges for solvation free energy calculations of various solute/solvent pairs. J Chem Theory Comput 13(12):6266–6274. https://doi.org/10.1021/acs.jctc.7b00692

    Article  CAS  PubMed  Google Scholar 

  17. Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 51(4):769–779. https://doi.org/10.1021/jm070549+

    Article  CAS  PubMed  Google Scholar 

  18. Guthrie JP (2009) A blind challenge for computational solvation free energies: introduction and overview. J Phys Chem B 113(14):4501–4507. https://doi.org/10.1021/jp806724u

    Article  CAS  PubMed  Google Scholar 

  19. Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24(4):259–279. https://doi.org/10.1007/s10822-010-9350-8

    Article  CAS  PubMed  Google Scholar 

  20. Mobley DL, Wymer KL, Lim NM, Guthrie JP (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. J Comput Aided Mol Des 28(3):135–150. https://doi.org/10.1007/s10822-014-9718-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) The SAMPL4 host–guest blind prediction challenge: an overview. J Comput Aided Mol Des 28(4):305–317. https://doi.org/10.1007/s10822-014-9735-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rizzo RC, Aynechi T, Case DA, Kuntz ID (2006) Estimation of absolute free energies of hydration using continuum methods: accuracy of partial charge models and optimization of nonpolar contributions. J Chem Theory Comput 2(1):128–139. https://doi.org/10.1021/ct050097l

    Article  CAS  PubMed  Google Scholar 

  23. Fennell CJ, Wymer KL, Mobley DL (2014) A fixed-charge model for alcohol polarization in the condensed phase, and its role in small molecule hydration. J Phys Chem B 118(24):6438–6446. https://doi.org/10.1021/jp411529h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahmed A, Sandler SI (2013) Hydration free energies of multifunctional nitroaromatic compounds. J Chem Theory Comput 9(6):2774–2785. https://doi.org/10.1021/ct3011002

    Article  CAS  PubMed  Google Scholar 

  25. Jämbeck JPM, Lyubartsev AP (2014) Update to the general amber force field for small solutes with an emphasis on free energies of hydration. J Phys Chem B 118(14):3793–3804. https://doi.org/10.1021/jp4111234

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  27. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  28. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell ADJR (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. https://doi.org/10.1002/jcc.21367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leontyev IV, Stuchebrukhov AA (2010) Electronic polarizability and the effective pair potentials of water. J Chem Theory Comput 6(10):3153–3161. https://doi.org/10.1021/ct1002048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Swope WC, Horn HW, Rice JE (2010) Accounting for polarization cost when using fixed charge force fields. I. Method for computing energy. J Phys Chem B 114(26):8621–8630. https://doi.org/10.1021/jp911699p

    Article  CAS  PubMed  Google Scholar 

  31. Lundborg M, Lindahl E (2015) Automatic GROMACS topology generation and comparisons of force fields for solvation free energy calculations. J Phys Chem B 119(3):810–823. https://doi.org/10.1021/jp505332p

    Article  CAS  PubMed  Google Scholar 

  32. Shi Y, Xia Z, Zhang J, Best R, Wu C, Ponder JW, Ren P (2013) The polarizable atomic multipole-based AMOEBA force field for proteins. J Chem Theory Comput 9(9):4046–4063. https://doi.org/10.1021/ct4003702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lopes PEM, Huang J, Shim J, Luo Y, Li H, Roux B, MacKerell ADJR (2013) Force field for peptides and proteins based on the classical Drude oscillator. J Chem Theory Comput 9(12):5430–5449. https://doi.org/10.1021/ct400781b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohamed NA, Bradshaw RT, Essex JW (2016) Evaluation of solvation free energies for small molecules with the AMOEBA polarizable force field. J Comput Chem 37(32):2749–2758. https://doi.org/10.1002/jcc.24500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cerutti DS, Rice JE, Swope WC, Case DA (2013) Derivation of fixed partial charges for amino acids accommodating a specific water model and implicit polarization. J Phys Chem B 117(8):2328–2338. https://doi.org/10.1021/jp311851r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muddana HS, Sapra NV, Fenley AT, Gilson MK (2014) The SAMPL4 hydration challenge: evaluation of partial charge sets with explicit-water molecular dynamics simulations. J Comput Aided Mol Des 28(3):277–287. https://doi.org/10.1007/s10822-014-9714-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280. https://doi.org/10.1021/j100142a004

    Article  CAS  Google Scholar 

  38. Baker CM, Lopes PEM, Zhu X, Roux B, Mackerell AD (2010) Accurate calculation of hydration free energies using pair-specific Lennard-Jones parameters in the CHARMM Drude polarizable force field. J Chem Theory Comput 6(4):1181–1198. https://doi.org/10.1021/ct9005773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Loeffler HH, Bosisio S, Duarte Ramos Matos G, Suh D, Roux B, Mobley DL, Michel J (2018) Reproducibility of free energy calculations across different molecular simulation software packages. J Chem Theory Comput 14(11):5567–5582. https://doi.org/10.1021/acs.jctc.8b00544

    Article  CAS  PubMed  Google Scholar 

  40. Stroet M, Koziara KB, Malde AK, Mark AE (2017) Optimization of empirical force fields by parameter space mapping: a single-step perturbation approach. J Chem Theory Comput 13(12):6201–6212. https://doi.org/10.1021/acs.jctc.7b00800

    Article  CAS  PubMed  Google Scholar 

  41. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22(8):1420. https://doi.org/10.1063/1.1740409

    Article  CAS  Google Scholar 

  42. Koziara KB, Stroet M, Malde AK, Mark AE (2014) Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies. J Comput Aided Mol Des 28(3):221–233. https://doi.org/10.1007/s10822-014-9713-7

    Article  CAS  PubMed  Google Scholar 

  43. Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Aided Mol Des 22(2):245–268. https://doi.org/10.1016/0021-9991(76)90078-4

    Article  Google Scholar 

  44. Case DA, Berryman JT, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Gotz AW, Homeyer N, Izadi S, Janowski PA, Kaus JW, Kovalenko A, Lee T, Le Grand S, Li P, Luchko T, Luo R, Madej BD, Merz KM, Monard G, Needham H, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg AE, Salomon-Ferrer R, Simmerling C, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, York DM, Kollman PA (2015) AMBER. University of California, San Francisco

    Google Scholar 

  45. Sousa da Silva AW, Vranken WF (2012) ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367

    Article  PubMed  PubMed Central  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford

    Google Scholar 

  47. Mennucci B, Cammi R, Tomasi J (1998) Excited states and solvatochromic shifts within a nonequilibrium solvation approach: a new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level. J Chem Phys 109(7):2798–2807. https://doi.org/10.1063/1.476878

    Article  CAS  Google Scholar 

  48. Bekker H, Berendsen HJC, Dijkstra EJ, Achterop S, van Drunen R, van der Spoel D, Sijbers A, Keegstra H, Reitsma B, Renardus MKR (1993) GROMACS: a parallel computer for molecular dynamics simulations. In: de Groot RA, Nadrchal J (eds) Physics computing ’92

  49. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys 91(1–3):43–56. https://doi.org/10.1016/0010-4655(95)00042-e

    Article  CAS  Google Scholar 

  50. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317. https://doi.org/10.1007/s008940100045

    Article  CAS  Google Scholar 

  51. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  52. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  PubMed  Google Scholar 

  53. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E (2015) Tackling Exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S, Laure E (eds) Solving software challenges for Exascale, vol 8759. Springer, Cham, pp 3–27

    Google Scholar 

  55. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  56. Goga N, Rzepiela AJ, de Vries AH, Marrink SJ, Berendsen HJC (2012) Efficient algorithms for Langevin and DPD dynamics. J Chem Theory Comput 8(10):3637–3649. https://doi.org/10.1021/ct3000876

    Article  CAS  PubMed  Google Scholar 

  57. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  58. Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45(14):1196–1199. https://doi.org/10.1103/physrevlett.45.1196

    Article  CAS  Google Scholar 

  59. Martinez L, Andrade R, Birgin EG, Martinez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164. https://doi.org/10.1002/jcc.21224

    Article  CAS  PubMed  Google Scholar 

  60. Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222(6):529–539. https://doi.org/10.1016/0009-2614(94)00397-1

    Article  CAS  Google Scholar 

  61. Pham TT, Shirts MR (2011) Identifying low variance pathways for free energy calculations of molecular transformations in solution phase. J Chem Phys 135(3):34114. https://doi.org/10.1063/1.3607597

    Article  CAS  Google Scholar 

  62. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129(12):124105. https://doi.org/10.1063/1.2978177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Statist 7(1):1–26. https://doi.org/10.1214/aos/1176344552

    Article  Google Scholar 

  64. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68(3):441–451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  65. Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 16(3):273–284. https://doi.org/10.1002/jcc.540160303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Andreas Mecklenfeld acknowledges funding by a Georg-Christoph-Lichtenberg Fellowship by the Federal State of Lower Saxony, Germany. The authors declare no competing financial interest. Molecular dynamics simulations were performed with resources provided by the North-German Supercomputing Alliance (HLRN). We greatly appreciate the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Raabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mecklenfeld, A., Raabe, G. Applicability of a thermodynamic cycle approach for a force field parametrization targeting non-aqueous solvation free energies. J Comput Aided Mol Des 34, 71–82 (2020). https://doi.org/10.1007/s10822-019-00261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00261-5

Keywords

Navigation