Skip to main content
Log in

A noncanonical binding site of linezolid revealed via molecular dynamics simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Linezolid, an antibiotic of oxazolidinone family, is a translation inhibitor. The mechanism of its action that consists in preventing the binding of aminoacyl-tRNA to the A-site of the large subunit of a ribosome was embraced on the basis of the X-ray structural analysis of the linezolid complexes with vacant bacterial ribosomes. However, the known structures of the linezolid complexes with bacterial ribosomes poorly explain the linezolid selectivity in suppression of protein biosynthesis, depending on the amino acid sequence of the nascent peptide. In the present study the most probable structure of the linezolid complex with a E. coli ribosome in the A,A/P,P-state that is in line with the results of biochemical studies of linezolid action has been obtained by molecular dynamics simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brickner SJ (1996) Oxazolidinone antibacterial agents. Curr Pharm Des 2(2):175–194

    CAS  Google Scholar 

  2. Barbachyn MR, Brickner SJ, Hutchinson DK (1997) Substituted oxazine and thiazine oxazolidinone antimicrobials. US Patent 5,688,792, A1

  3. U.S. Food and Drug Administration. Zyvox (Linezolid) Tablets, Injection & Oral Suspension. Application No 021130s003, 021131s003 & 021132s003. Approval Date 12/19/2002. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21-130s003_21131s003_21132s003_ZyvoxTOC.cfm

  4. Slee A, Wuonola M, McRipley R, Zajac I, Zawada M, Bartholomew P, Gregory W, Forbes M (1987) Oxazolidinones, a new class of synthetic antibacterial agents: in vitro and in vivo activities of DuP 105 and DuP 721. Antimicrob Agents Chemother 31(11):1791–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eustice D, Feldman P, Slee A (1988) The mechanism of action of dup 721, a new antibacterial agent: effects on macromolecular synthesis. Biochem Biophys Res Commun 150(3):965–971

    Article  CAS  PubMed  Google Scholar 

  6. Shinabarger DL, Marotti KR, Murray RW, Lin AH, Melchior EP, Swaney SM, Dunyak DS, Demyan WF, Buysse JM (1997) Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob Agents Chemother 41(10):2132–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swaney SM, Aoki H, Ganoza MC, Shinabarger DL (1998) The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 42(12):3251–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR, Fucini P (2008) The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc Natl Acad Sci USA 105(36):13339–13344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB, Steitz TA, Duffy EM (2008) Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem 51(12):3353–3356

    Article  CAS  PubMed  Google Scholar 

  10. Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S, Zimmerman E, Rozenberg H, Bashan A, Yonath A (2015) Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureusreus. Proc Natl Acad Sci USA 112(43):E5805–E5814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belousoff MJ, Eyal Z, Radjainia M, Ahmed T, Bamert RS, Matzov D, Bashan A, Zimmerman E, Mishra S, Cameron D, Elmlund H, Peleg AY, Bhushan S, Lithgow T, Yonath A (2017) Structural basis for linezolid binding site rearrangement in the Staphylococcus aureus ribosome. mBio 8(3):e00395-17

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sacchettini JC, Chang JY, Thongchol J, Yang K, Duan L, Meng R, Li X, Cui Z, Zhang J, Jakana J, Huwe CM (2017) Structural insights into species-specific features of the ribosome from the human pathogen Mycobacterium tuberculosis. Nucleic Acids Res 45(18):10884–10894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R, Rodnina MV, Stark H (2015) Structure of the E. coli ribosome-EF-Tu complex at \(<3\) Å resolution by Cs-corrected cryo-EM. Nature 520:567–570

    Article  PubMed  CAS  Google Scholar 

  14. Lin J, Gagnon MG, Bulkley D, Steitz TA (2015) Conformational changes of elongation factor G on the ribosome during tRNA translocation. Cell 160:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilson DN (2009) The A–Z of bacterial translation inhibitors. Crit Rev Biochem Mol Biol 44(6):393–433

    Article  CAS  PubMed  Google Scholar 

  16. Lin AH, Murray RW, Vidmar TJ, Marotti KR (1997) The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrob Agents Chemother 41(10):2127–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kloss P, Xiong L, Shinabarger DL, Mankin AS (1999) Resistance mutations in 23S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. J Mol Biol 294(1):93–101

    Article  CAS  PubMed  Google Scholar 

  18. Marks J, Kannan K, Roncase EJ, Klepacki D, Kefi A, Orelle C, Vázquez-Laslop N, Mankin AS (2016) Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. Proc Natl Acad Sci USA 113(43):12150–12155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Makarov G, Makarova T (2018) A noncanonical binding site of chloramphenicol revealed via molecular dynamics simulations. Biochim Biophys Acta 1862(12):2940–2947

    Article  CAS  Google Scholar 

  20. Vázquez-Laslop N, Mankin AS (2018) Context-specific action of ribosomal antibiotics. Annu Rev Microbiol 72(1):185–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Makarov GI, Makarova TM, Sumbatyan NV, Bogdanov AA (2016) Investigation of ribosomes using molecular dynamics simulation methods. Biochemistry (Moscow) 81(13):1579–1588

    Article  CAS  Google Scholar 

  22. Bock LV, Kolář MH, Grubmüller H (2018) Molecular simulations of the ribosome and associated translation factors. Curr Opin Struct Biol 49:27–35

    Article  CAS  PubMed  Google Scholar 

  23. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform 3(1):1–31

    Article  Google Scholar 

  24. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596

    Article  CAS  PubMed  Google Scholar 

  25. Brilot AF, Korostelev AA, Ermolenko DN, Grigorieff N (2013) Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc Natl Acad Sci USA 110(52):20994–20999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petrone P, Snow C, Lucent D, Pande V (2008) Side-chain recognition and gating in the ribosome exit tunnel. Proc Natl Acad Sci USA 105(43):16549–16554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lucent D, Snow C, Aitken C, Pande V (2010) Non-bulk-like solvent behavior in the ribosome exit tunnel. PLoS Comput Biol 6(10):e1000963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P, Barril X, Hubbard RE, Morley SD (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10(4):e1003571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A, Berendsen H (2005) GROMACS: fast, flexible, free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  30. van der Spoel D, Lindahl E, Hess B, Kutzner C (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  PubMed  CAS  Google Scholar 

  31. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65(3):712–725

    Article  CAS  Google Scholar 

  32. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  33. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280

    Article  CAS  Google Scholar 

  34. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  35. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014107–014106

    Article  CAS  Google Scholar 

  36. Berendsen H, Postma J, van Gunsteren W, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  37. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an \({N}log({N})\) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  38. Wennberg CL, Murtola T, Hess B, Lindahl E (2013) Lennard–Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid properties. J Chem Theory Comput 9(8):3527–3537

    Article  CAS  PubMed  Google Scholar 

  39. Joung IS, Cheatham TE (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112(30):9020–9041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Athavale S, Petrov A, Hsiao C, Watkins D, Prickett C, Gossett J, Lie L, Bowman J, O’Neill E, Hud CBN, Wartell R, Harvey S, Williams L (2012) RNA folding and catalysis mediated by iron (II). PLoS ONE 7:1–7

    Article  CAS  Google Scholar 

  41. Domene C, Barbini P, Furini S (2015) Bias-exchange metadynamics simulations: an efficient strategy for the analysis of conduction and selectivity in ion channels. J Chem Theory Comput 11(4):1896–1906

    Article  CAS  PubMed  Google Scholar 

  42. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100(2):020603

    Article  PubMed  CAS  Google Scholar 

  43. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185(2):604–613

    Article  CAS  Google Scholar 

  44. Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107(35):9535–9551

    Article  CAS  Google Scholar 

  45. Bennett CH (1976) Efficient estimation of free energy differences from monte carlo data. J Comput Phys 22(2):245–268

    Article  Google Scholar 

  46. Makarov GI, Sumbatyan NV, Bogdanov AA (2017) Structural insight into interaction between C20 phenylalanyl derivative of tylosin and ribosomal tunnel. Biochemistry (Moscow) 82(8):925–932

    Article  CAS  Google Scholar 

  47. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38(1–2):236–240

    Article  CAS  Google Scholar 

  48. Long KS, Vester B (2012) Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56(2):603–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kowalak JA, Bruenger E, McCloskey JA (1995) Posttranscriptional modification of the central loop of domain V in Escherichia coli 23S ribosomal RNA. J Biol Chem 270(30):17758–17764

    Article  CAS  PubMed  Google Scholar 

  50. Toh SM, Xiong L, Bae T, Mankin AS (2008) The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. RNA 14(1):98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Conrad J, Sun D, Englund N, Ofengand J (1998) The rluC gene of Escherichia coli codes for a pseudouridine synthase that is solely responsible for synthesis of pseudouridine at positions 955, 2504, and 2580 in 23S ribosomal RNA. J Biol Chem 273(29):18562–18566

    Article  CAS  PubMed  Google Scholar 

  52. Huang L, Ku J, Pookanjanatavip M, Gu X, Wang D, Greene PJ, Santi DV (1998) Identification of two Escherichia coli pseudouridine synthases that show multisite specificity for 23S RNA. Biochemistry 37(45):15951–15957

    Article  CAS  PubMed  Google Scholar 

  53. Toh SM, Mankin AS (2008) An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors. J Mol Biol 380(4):593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Makarova T, Bogdanov A (2019) Allosteric regulation of the ribosomal A site revealed by molecular dynamics simulations. Biochimie 167:179–186

    Article  CAS  PubMed  Google Scholar 

  55. Ramakrishnan V, Brodersen D, Carter A (2002) Crystal structure of antibiotics bound to the 30S ribosome and its use. US Patent 20020072861, A1

Download references

Acknowledgements

We thank Professor A. A. Bogdanov for active support of the research and associate professor E. I. Danilina for assistance in preparation of the article. We thank the Research Computing Center of Lomonosov Moscow State University for the opportunity to compute molecular dynamics using the “Lomonosov-II” supercomputer. This research was supported by the Russian Science Foundation (Project No. 18-74-00022, interaction of antibiotics with binding sites forming in a dynamically manner), and by the Government of the Russian Federation (Resolution No. 211 dated 16.03.2013, Contract No. 02.A03.21.0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Makarov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, G.I., Makarova, T.M. A noncanonical binding site of linezolid revealed via molecular dynamics simulations. J Comput Aided Mol Des 34, 281–291 (2020). https://doi.org/10.1007/s10822-019-00269-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00269-x

Keywords

Navigation