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Abstract 
Macrocycles represent an important class of medicinally relevant small molecules due to their interesting biological properties. 
Therefore, a firm understanding of their conformational preferences is important for drug design. Given the importance of 
macrocycle-protein modelling in drug discovery, we envisaged that a systematic study of both classical and recent specialized 
methods would provide guidance for other practitioners within the field. In this study we compare the performance of the 
general, well established conformational analysis methods Monte Carlo Multiple Minimum (MCMM) and Mixed Torsional/
Low-Mode sampling (MTLMOD) with two more recent and specialized macrocycle sampling techniques: MacroModel mac-
rocycle Baseline Search (MD/LLMOD) and Prime macrocycle conformational sampling (PRIME-MCS). Using macrocycles 
extracted from 44 macrocycle-protein X-ray crystallography complexes, we evaluated each method based on their ability to (i) 
generate unique conformers, (ii) generate unique macrocycle ring conformations, (iii) identify the global energy minimum, (iv) 
identify conformers similar to the X-ray ligand conformation after Protein Preparation Wizard treatment (X-rayppw), and (v) to 
the X-rayppw ring conformation. Computational speed was also considered. In addition, conformational coverage, as defined 
by the number of conformations identified, was studied. In order to study the relative energies of the bioactive conformations, 
the energy differences between the global energy minima and the energy minimized X-rayppw structures and, the global energy 
minima and the MCMM-Exhaustive (1,000,000 search steps) generated conformers closest to the X-rayppw structure, were 
calculated and analysed. All searches were performed using relatively short run times (10,000 steps for MCMM, MTLMOD 
and MD/LLMOD). To assess the performance of the methods, they were compared to an exhaustive MCMM search using 
1,000,000 search steps for each of the 44 macrocycles (requiring ca 200 times more CPU time). Prior to our analysis, we also 
investigated if the general search methods MCMM and MTLMOD could also be optimized for macrocycle conformational 
sampling. Taken together, our work concludes that the more general methods can be optimized for macrocycle modelling by 
slightly adjusting the settings around the ring closure bond. In most cases, MCMM and MTLMOD with either standard or 
enhanced settings performed well in comparison to the more specialized macrocycle sampling methods MD/LLMOD and 
PRIME-MCS. When using enhanced settings for MCMM and MTLMOD, the X-rayppw conformation was regenerated with 
the greatest accuracy. The, MD/LLMOD emerged as the most efficient method for generating the global energy minima.
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Introduction

Computational modelling has transformed the strategic 
decision making process in drug discovery; both reducing 
costs and improving efficiency [1]. Prominent areas of con-
tribution include pharmacophore-based, and shaped-based 
virtual screening [2-4], and docking [5] of drug candidates 
to their protein targets. Although these methods use differ-
ent approaches, they all require conformational data as an 
input. Conformational sampling is also required for other 
computational techniques employed in medicinal chemistry, 
for example drug design [6], drug permeability prediction 
[7], NMR data interpretation [8-11], and fitting molecules 
to X-ray electron density maps [12]. Therefore, it is of great 
importance to have reliable and efficient methods for con-
former generation.

Recently, macrocycles (herein defined as cyclic com-
pounds with a ring size of 10 atoms or more) have gained 
increased importance in drug discovery because of their 
unique properties [6, 13-17]. Macrocycles may possess cell 
permeability better than expected by the “rule-of-five” [6, 
17, 18], improved metabolic stability [11], enhanced bind-
ing properties to featureless binding sites [19], as well as 
the ability to disrupt protein–protein interactions [19-22]. 
However, macrocycles often present a significant synthetic 
challenge [13, 23-25]. It is therefore of great importance to 
develop and improve computational methods, such as con-
formational analysis, to focus the design of new macrocyclic 
ligands [26, 27].

In 1990, Saunders et al. performed a conformational 
analysis study on cycloheptadecane, aiming to identify the 
best method for searching large ring structures [28]. After 
evaluating systematic and random search methods, as well as 
molecular dynamics and a distance geometry method, they 
concluded that cycloheptadecane was lying at the boundary 
of what could be addressed with the technology of the time. 
In recent times, many new algorithms for exploring molec-
ular potential energy surfaces have been developed e.g. 
LMOD [8], LLMOD [29], MTLMOD [30], LowModeMD 
[31], MD/LLMOD [32], PRIME-MCS [33], ForceGen 
[34], BRIKARD [35], PLOP [36], a DFT-D3/COSMO-RS 
based method [37], and, most recently, Conformator [38]. 
However, conformational sampling of macrocycles is still 
considered a challenging task [36, 39]. To provide guid-
ance for other practitioners within the field we compare the 
conformational search capabilities of four different meth-
ods with respect to sampling the conformational space of 
macrocycles.

In the current study, we use a data set of 44 protein-mac-
rocycle complexes (38 unique ring systems) [40], where the 
majority of the structures originated from the commonly 
used data set of Watts et  al. [32] In terms of sampling 

methods, we decided to include the general Monte Carlo 
Multiple Minimum (MCMM) method since it has not yet 
been extensively applied towards macrocycle sampling. 
The MCMM algorithm was published by Chang et al. in 
1989 [41] and is implemented in the Schrödinger software 
MacroModel. In 1989, yet another conformational search 
algorithm called random incremental pulse search (RIPS) 
was published by Ferguson and Raber [42]. Today, a similar 
approach to RIPS, called stochastic search, is implemented 
in the Chemical Computing Group’s Molecular Operating 
Environment (MOE) software [43]. The MCMM and MOE 
stochastic search methods are not built upon the same search 
algorithm and, therefore, we expect differences in their per-
formance. Whilst the MOE stochastic search algorithm has 
often been used in conformational analysis comparison stud-
ies, MCMM has not been utilized in this capacity. Thus, we 
wanted to investigate the performance of MCMM applied 
on macrocycles. Another more general method, the Mixed 
Torsional/Low-Mode (MTLMOD) sampling conformational 
search method, was also included in this study. This method 
has been used in several recent publications to sample the 
conformational space of both macrocycles and non-macro-
cyclic structures [44]. Finally, we wanted to compare these 
more general conformational search methods with two more 
recent specialized macrocycle sampling methods: Macro-
Model macrocycle Baseline Search (MD/LLMOD) [32] and 
Prime macrocycle conformational sampling (PRIME-MCS) 
[33]. MD/LLMOD combines a short molecular dynamics 
simulation with Large-Scale Low-Mode steps. In compari-
son, PRIME-MCS splits the macrocycle backbone into two 
pieces, sampling them independently using predefined angle 
libraries before reconnecting the pieces again [33]. Before 
performing the method comparison, we investigated if the 
general methods (MCMM and MTLMOD) could also be 
optimized for macrocycle conformational sampling. Based 
on the findings in the optimization step, we performed the 
method comparison study where all search methods (includ-
ing both standard and enhanced MCMM and MTLMOD) 
were benchmarked against an exhaustive MCMM search 
using 1,000,000 search steps. After comparatively evaluat-
ing these methods, we addressed the conformational cover-
age, as well as the energy difference between the conformer 
closest to the X-rayppw conformation and the “global energy 
minimum”. The workflow of the study is summarized in 
Fig. 1.

Methods

Unless otherwise stated, all calculations were performed 
within the Schrödinger Small-Molecule Drug Discovery 
Suite 2017–1 [45] using the OPLS3 [46] force field with 
the GB/SA continuum solvation model for water [47]. 
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When setting up a calculation in the Maestro GUI, some 
methods use kJ mol−1 and others kcal mol−1. Therefore, we 
decided to present the settings in the unit used, along with 
the alternative unit in parenthesis. All graphs presented 
herein were made in Python [48] and R [49]. Figures were 
made in Microsoft PowerPoint [50]. PCA-models (includ-
ing score and loading plots) were made in SIMCA [51]. 
Molecular modeling figures were made in PyMOL [52].

Data set selection

The macrocycles in the 47 protein–ligand complexes pre-
viously published by Alogheli et al. [40] were used in the 
present study. The three duplicate structures 2IYF, 1FKJ 
and, 1YET (Erythromycin in 2IYF/3FRQ and Tacrolimus 

in 1FKJ/4NNR, and Geldanamycin in 1YET/2ESA) present 
in the Alogheli data set, were removed from the data set to 
give 44 macrocycles.

X‑ray structures preparation

All 44 X-ray structures were downloaded from the Protein 
Data Bank (PDB) [53, 54] and prepared using the Protein 
Preparation Wizard [55, 56] in Maestro [57] using default 
options as described below. In the previous docking study by 
Alogheli et al. [40] the OPLS-2005 force field was used for 
preparing the structures while in the present work we used 
the OPLS3 force field. The PDB structures were therefore 
reprocessed using OPLS3. Missing side-chains were added 
by Prime side-chain predictions [58-60]. In cases where resi-
dues had alternate positions, the first listed position, or the 
position with the highest average occupancies, was selected. 
The ligand tautomer and ionization state, as well as protein 
protonation states, were the same as used in the study by 
Alogheli et al. [40] (see the tautomer and ionization state of 
the structures in Table 1). Furthermore, the hydrogen bond 
networks of the protein–ligand complexes were optimized 
and water molecules forming less than three hydrogen bonds 
to non-waters were removed. Finally, the protein–ligand 
complexes were energy minimized using default settings 
where heavy atoms were displaced no more than 0.3 Å Root 
Mean Square Deviation (RMSD).

Selecting a non‑biased starting conformation

To compare strategies for generating a non-biased starting con-
formation, two approaches were used. The most commonly 
employed method involves converting the X-ray structure to 
SMILES format, whilst retaining stereochemical information, 
and then converting it back to the 3D structure. Accordingly, 
all macrocycle X-ray structures in the current study were con-
verted to SMILES codes and then back to their 3D structures 
using LigPrep, before these conformational geometries were 
compared to their corresponding X-ray structures. Alter-
natively, we also applied a more elaborate approach where 
we performed an MCMM conformational sampling of each 
macrocycle (starting from the SMILES generated structure) 
using 10,000 search steps and an energy window for keeping 
conformers of 62.8 kJ mol−1 (15.01 kcal mol−1). The con-
former with the highest RMSD to the X-ray conformation 
was selected and further analyzed (hereafter called “starting 
conformer”). To compare the two strategies, we used a confor-
mational clustering tool and calculated the torsional RMSD, 
including all dihedral angles except those involving terminal 
atoms, i.e. methyl hydrogens. The two strategies were also 
compared by calculating the number of torsional angles that 
deviated more than 120° or 60°, respectively, from the tor-
sional angles found in the X-rayppw conformation (excluding 

Fig. 1   A graphical summary of the study design
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Table 1   Structures of the 
Macrocycles in the Tautomer/
Ionization States Used for 
Conformational Analysis

The PDB code of the complex structure are shown to the lower left, whereas the ligand name (when 
given) and the ligand code are shown to the upper left and lower right, respectively. Macrocycles that 
were included in the subset are marked with “subset” to the upper right.
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terminal atom dihedral angles). We also included a comparison 
to the energy minimized X-rayppw structure. All calculations 
were performed by running a script in the command script 
editor followed by a separate python script.

The conformer most dissimilar to the X-rayppw structure 
after an MCMM search was selected as the “starting con-
former” and was used for all conformational sampling stud-
ies performed in this study. A similar approach for generat-
ing the starting conformation was used by Coutsias et al. 
[35]

Conformational sampling

All methods except MD/LLMOD and MCMM-Exhaustive 
were run in triplicates using different seeds.

Conformational sampling using MCMM and MTLMOD

The Monte Carlo Multiple Minimum (MCMM) and the 
Mixed torsional/Low-Mode sampling (MTLMOD) search 
methods implemented in MacroModel [61] were run with 
10,000 steps in total for each compound. The option of 
using a fixed number of steps per rotatable bond, as well as 
the Multi-Ligand option, were deselected. Torsional sam-
pling of amides, esters, as well as all C–N and C–O single 
bonds and C=N and N=N double bonds, were allowed in 
the search (“extended sampling”). For energy minimiza-
tions, up to 50,000 steps of Truncated Newton minimiza-
tion (TNCG) [62] with a gradient convergence criterion of 
0.05 kJ Å−1 mol−1 was used (the minimization terminates 
when the convergence criterion is met). A 0.5 Å distance 
threshold between any pair of heavy atoms (and O–H, 
S–H) was used for elimination of redundant conformers. 
The energy window for keeping conformers was set to 
62.8 kJ mol−1 (15.01 kcal mol−1). For MTLMOD, the prob-
ability of a torsion rotation/molecule translation was set to 
the default value of 0.5. Also, the minimum and maximum 
distance for low-mode moves were kept at default values of 
3.0 and 6.0 Å, respectively. Random seeding was achieved 
by modifying the .com files, see section “Random seeding 
for MCMM and MTLMOD” in supporting information.

Conformational sampling using one million search steps 
(MCMM‑Exhaustive)

In this MCMM search the same settings as metioned above 
were used except that stereocenters adjacent to ring clo-
sures were avoided and a wider ring-opening criterion was 
used (0–100 Å). This search will be referred to as MCMM-
Exhaustive and 1,000,000 search steps were used for each 
compound.

Conformational sampling using MD/LLMOD

For MacroModel Macrocycle Baseline Search (MD/
LLMOD) the energy window for keeping conformers was 
set to 15.01 kcal mol−1 (62.8 kJ mol−1) and the torsion sam-
pling option was set to extended mode, enabling ester and 
amide sampling. The remaining settings were left at their 
default values: elimination of redundant conformers using 
an RMSD of 0.75 Å, 5000 molecular dynamics simulation 
cycles and 5000 LLMOD (Large-scale Low-mode) search 
steps. Eigenvectors were determined for each new global 
minimum.

Conformational sampling using PRIME‑MCS

PRIME-MCS was run from the command line. In short, 
PRIME-MCS was run in vacuum. PRIME-MCS was run 
using the sampling intensity “thorough” generating up 
to 1000 conformations. For more details about the used 
PRIME-MCS syntax, see “PRIME-MCS sampling-syntax” 
section in supporting information.

Exploring energy minimization method and ring 
closure settings on a diverse subset of 10 
macrocycles

Selection of a diverse subset

Ten diverse macrocycles were chosen from the 44 macro-
cycles to represent the full data set of 44 macrocycles using 
a principal component analysis (see section “Selection of a 
Diverse Subset.” in supporting information). The macrocy-
cles in the subset are marked with “subset” in Table 1.

Conformational sampling of the macrocycles in the subset 
using MCMM and MTLMOD

The same settings as described above using 10,000 search 
steps was used except that this study was performed using 
only one seed.

Minimization method

The PRCG and TNCG minimization methods were com-
pared using the MCMM and MTLMOD methods. For 
energy minimizations, up to 50,000 steps of PRCG or 
TNCG minimization with a gradient convergence criterion 
of 0.05 kJ Å−1 mol−1 was used (the minimization terminates 
when the convergence criterion is met).
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Ring closure criterion

The default ring closure criterion closes the opened ring 
systems if the distance between the ring-opened atoms are 
between 0.5 and 2.5 Å. It is recommended to use a wider 
ring closure criterion of ca. 0.1–5.0 Å for larger ring sys-
tems, therefore, this distance was evaluated [63]. A very 
wide ring closure criteria, between 0–100  Å, was also 
evaluated.

Evaluation of the conformational search methods

The performance of the conformational search methods were 
evaluated with respect to the number of unique conform-
ers generated, number of unique ring conformations, com-
putational speed, ability to find the global minimum and, 
the ability to identify conformers similar to the experimen-
tally determined X-ray conformation after Protein Prepara-
tion Wizard treatment (X-rayppw) and to the X- rayppw ring 
conformation.

Number of generated conformers and ring conformations

The number of generated conformers were extracted from 
the conformational search log files (.log files). The number 
of ring conformers generated by each method was investi-
gated via the Redundant Conformation Elimination method 
implemented in MacroModel (for specialized settings see 
“Calculating the Number of Generated Conformers and 
Ring Conformations.” in supporting information). The heavy 
atoms in the macrocyclic ring were superimposed and redun-
dant conformers were eliminated based on a maximum atom 
deviation cut-off of 0.5 Å. The Retain Mirror Image confor-
mation option was used. The energy window for conformer 
selection was set to 62.8 kJ mol−1 (15.01 kcal mol−1).

Computational speed

To compare computational times between methods, the CPU 
times were extracted from the log files (.log-file).

Identifying the global energy minimum

The global energy minimum conformer was considered 
as identified if a method generated a conformer with an 
energy difference not greater than 1 kJ mol−1 compared 
to the lowest energy conformer found by any method for 
that macrocycle (here assumed to correspond to the global 
energy minimum). As an additional evaluation, the similar-
ity in geometry between the global energy minimum and 
the lowest energy conformer within 1 kJ mol−1 from the 
global energy conformer generated by the other methods, 
was analyzed. Here two different RMSD values using only 

the heavy atoms in the macrocyclic ring and all heavy atoms, 
respectively, were calculated.

Producing a conformation similar to the X‑rayppw 
conformation

The ability of different search methods to generate conform-
ers similar to the experimentally determined conformation 
was evaluated by calculating the RMSD between the heavy 
atoms in the ligand X-ray structure after Protein Preparation 
Wizard treatment (called X-rayppw) and the generated con-
formers using the superposition tool in Maestro.

Producing a conformation similar to the X‑rayppw ring 
conformation

The ability of the different search methods to generate ring 
conformations similar to the experimentally determined 
X-ray ring conformation was evaluated by calculating the 
RMSDRING between the heavy ring atoms in the X-ray struc-
ture after Protein Preparation Wizard treatment (X-rayppw) 
and the generated conformers using the superposition tool 
in Maestro.

Results and discussion

This study aimed to evaluate the performance of the more 
general and well-established conformational analysis meth-
ods MCMM and MTLMOD in comparison with the new 
specialized macrocycle sampling techniques MD/LLMOD 
and PRIME-MCS. Given the importance of macrocycle-pro-
tein modelling in drug discovery, we envisaged that a sys-
tematic study of both classical and recent specialized meth-
ods would provide guidance for other practitioners within 
the field. In addition to assessing the relative performance 
of these conformational search methods, we also wanted to 
address the challenge of performing conformational analysis 
of large macrocyclic structures with many rotatable bonds. 
This included studying the degree of conformational space 
covered in a conformational search. The energy differences 
between the conformers most similar to the X-rayppw confor-
mation and the lowest energy conformation identified were 
also studied. However, the default settings of the general 
methods have not necessarily been optimized to perform 
well on macrocycles [32]. Therefore, using 10 macrocycles 
as a representative subset of the full data set, we first investi-
gated whether small changes to the MCMM and MTLMOD 
methods could enhance conformational sampling of these 
challenging ring systems and improve the X-rayppw repro-
duction accuracy. Thereafter, we used the full data set with 
macrocycles extracted from 44 crystal structures and com-
pared the two general methods (with and without enhanced 
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settings) with the two more specialized methods MCS-
PRIME and MD/LLMOD.

Conformational sampling can be run using many different 
settings. To enable fair comparison of the current work with 
previous studies, we opted to employ 10,000 search steps 
per structure, an amount that should be feasible for most 
modelling projects [33, 34, 41, 64]. To further align our 
work with the literature, an energy window of 15 kcal mol−1, 
[44] and up to 50,000 minimization steps [32] was used. For 
all methods except MD/LLMOD and MCMM-Exhaustive, 
three runs with different seeds were performed to assess how 
the stochastic element of the searches affected the results 
[44]. Finally, we ran an exhaustive conformational search 
using the MCMM-Enhanced settings and 1,000,000 search 
steps per structure to compare with the results obtained from 
the searches using only 10,000 steps search per structure.

It should be noted that when the MD/LLMOD method 
was developed it was trained on about two-thirds of the mac-
rocycles used in this study, which could potentially bias the 
results [32].

Data set selection

In general, macrocycle conformational analysis studies have 
used structures obtained from both the PDB and the Cam-
bridge Structural Database (CSD) [65], with the majority of 
the structures retrieved from the latter. A significant differ-
ence between these databases is that reported macrocycle 
structures are typically crystallised either with or without 
protein partners in the PDB and CSD, respectively. Whilst 
reported conformations of macrocycles reported in both 
the “free” and protein-bound state can be similar, they may 
also diverge significantly [36]. Given our emphasis on bio-
logically relevant macrocycles, we directed efforts towards 
X-ray conformations extracted from the PDB as these pro-
tein–ligand complexes can be considered as the bioactive, 
bound-state conformations. This allowed us to exclusively 
study if the conformational analysis methods could produce 
conformations similar to the protein-bound macrocycle 
conformations.

Currently, there are several macrocycle data sets publicly 
available. Two of the most frequently used were published 
by Chen and Foloppe [44] and Watts et al. [32]. In the pre-
sent study we used the 47 protein-macrocycle complexes 
previously published by Alogheli et al. [40] Briefly, the 
Alogheli et al. data set originates from the 150 structures 
collected by Watts et al. However, all 83 structures obtained 
from the CSD were removed. The remaining 67 PDB struc-
tures were further filtered where structures with either a ring 
size below 10 atoms, an overall resolution above 2.5 Å, poor 
ligand resolution, uncertain stereochemistry, predominantly 
solvent exposed ligands, extensive ligand-ligand interac-
tions and structures that did not overlap with the binding 

site produced by SiteMap [66], were removed. After this, 
31 structures remained. Subsequently, using the same crite-
ria, 16 PDB structures containing macrocycles were added, 
which gave 47 structures altogether. As described in the 
Methods section, there are three duplicate structures in the 
Alogheli data set (Erythromycin in 2IYF/3FRQ, Tacroli-
mus in 1FKJ/4NNR, and Geldanamycin in 1YET/2ESA). 
To avoid duplicate sampling, 2IYF, 1FKJ and, 1YET were 
removed from the present data set. Thus, the number of 
unique macrocycles in our data set is 44 and the number of 
unique ring system is 38.

The macrocycle ring sizes varied between 11 and 29 
ring atoms (median 16), and the number of rotatable bonds 
ranged from 8 to 47 (median 23), see Table 1 for 2D struc-
tures and Table 2 for a summary of some characteristics of 
the data set.

Generating a non‑biased starting conformation

In a conformational analysis study, it is less of a challenge 
to generate a conformation close to the X-ray conformation 
if the starting conformation is geometrically similar. There-
fore, to ensure a starting geometry sufficiently dissimilar 
from the X-ray structure, it is typical to convert the X-ray 
structure to a 2D SMILES string and then convert it back 
to a 3D structure (keeping stereochemical information). In 
this study we used an alternative approach where confor-
mational ensembles generated via a 10,000 step MCMM 
search were generated for each macrocycle and compared 

Table 2   Characteristics of the Full Data set Consisting of 44 Macro-
cycles

All descriptors were calculated using QikProp, except for ring size 
and the number of torsional angles sampled, which were calculated 
by hand. For 2XYT descriptors were calculated using Instant JChem 
[83]
a Number of torsional angles sampled during the MCMM and 
MTLMOD conformational searches
b Number of hydrogen bond donors
c Number of hydrogen bond acceptors
d Calculated octanol/water partition coefficient
e Polar surface area

Property Average Median Minimum Maximum

PDB resolution (Å) 1.88 1.88 0.95 2.50
Ring size 17 16 11 29
#Torsional angles 

sampleda
25 23 8 47

Molecular weight 571 538 280 1041
DonorHBb 2.5 2.0 0 9.3
AcceptHBc 12.0 11.2 5.3 26.9
QPlogPo/wd 2.7 2.8 − 2.6 6.8
PSAe 142 124 71 411
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to the corresponding X-rayppw conformation. The conformer 
with the highest atomic RMSD to the X-rayppw conformation 
was then chosen as the starting conformation for all subse-
quent conformational analysis studies. Using this approach 
no starting conformers had RMSD values below 1 Å to the 
X-rayppw conformation, see Table 3 (“starting conformer”) 
and Table S1 for detailed results. This should be com-
pared with the generally accepted procedure of converting 
SMILES strings to 3D structures, which had four structures 
below the 1 Å RMSD threshold. However, it is well-known 
that one can obtain a high RMSD between two structures 
by altering only one or a few torsional angles, leaving all 
other geometric parameters unchanged. Therefore, to further 
evaluate the similarity between the starting conformers and 
the X-ray conformation, the torsional RMSD values were 
calculated.

Comparing the torsional RMSD values between the two 
different approaches, the median torsional RMSD were 
64.3° and 68.9° for the SMILES generated conformers and 
the conformational ensemble generated starting conform-
ers, respectively (Table S1). For comparison, the energy 
minimized X-rayppw conformations had a median torsional 
RMSD of 8.9°. We also compared the number of torsional 
angles that differed by more than 120° in comparison to 
the X-rayppw conformation, which were similar for the two 
approaches. The median number of torsional angles differ-
ing by more than 120° was five for both the starting con-
former and the SMILES generated conformer. The median 
number of torsional angles differing by more than 60° was 
slightly higher for the starting conformers (16 torsional 
angles) compared to the SMILES conformers (14 torsional 
angles). Thus, no major difference was observed between 
the two approaches for generating a starting conformation 
of sufficient dissimilarity to the X-rayppw structure. Taken 
together, we used the most dissimilar structure based on 
atomic RMSD as the starting conformation in the confor-
mational analysis studies. Overall, this conformation was 
more dissimilar to the X-rayppw conformation as compared to 
the SMILES generated conformer, since four of the SMILES 

generated conformers had atomic RMSD values below the 
1 Å threshold. As a general note, evaluating the dissimilarity 
between starting and X-rayppw conformations is advisable 
irrespective of the generating method.

Exploring energy minimization method and ring 
closure settings for MCMM and MTLMOD 
on a diverse subset of 10 macrocycles

Energy minimization method

Chen and Foloppe have shown that the settings for sam-
pling macrocycles can be enhanced for improved search per-
formance [44]. As it was observed that a major part of the 
conformational searches was spent on energy minimization 
of the generated conformations, the choice of minimization 
method was investigated using the diverse 10 macrocycle 
subset. The conformational search methods in MacroModel 
offer a wide variety of minimization methods, where the 
Polak-Ribiere Conjugated Gradient method (PRCG) is the 
default method while the truncated-Newton conjugate-gra-
dient (TNCG) is described as a superb method for flexible 
structures [63]. Newton based minimization methods have 
also been frequently employed [30, 41, 67]. The PRCG and 
TNCG minimization methods were compared for the two 
conformational analysis methods MCMM and MTLMOD. 
To align all minimizations, up to 50,000 minimization steps 
were chosen since this is default setting for the MD/LLMOD 
method (the minimization terminates when the convergence 
criterion is met). In summary, applied on the diverse mac-
rocycle subset, MCMM and MTLMOD ran 1.6 times and, 
7.5 times faster, respectively, using TNCG instead of PRCG, 
see Table 4. Therefore, all minimizations with the MCMM 
and MTLMOD methods were run with TNCG instead of 
PRCG in this study.

Ring closure criterion for MCMM and MTLMOD 
conformational searches

The MCMM and MTLMOD search methods are imple-
mented in MacroModel. The MTLMOD method uses 
either LowMode steps or MCMM steps [67]. To generate 
a new conformation for ring-containing compounds using 
the MCMM or MTLMOD methods, the ring needs to be 
temporarily opened, thus, a cleavage site must be identified. 
Using ths default settings the acceptance criteria for ring 
closure after torsional variation is 0.5–2.5 Å. To evaluate the 
performance if all opened rings are re-closed, a very wide 
ring closure criteria between 0 and 100 Å was investigated. 
Similar wide ring closure distances have been used in pre-
vious studies (e.g., 0.1–30 Å) [30]. Cleavage sites adjacent 
to a stereocenter can potentially present complications as 
reconnecting the two atoms after the torsional movement 

Table 3   Comparing different strategies to generate non-biased start-
ing conformers

a RMSD for the conformer identified with the lowest RMSD value to 
the X-rayppw ligand. The conformers are, dependent on their calcu-
lated RMSD values, divided into three different groups with RMSD 
values: below 1 Å, between 1–2 Å, and greater than 2 Å

RMSD (Å)a

Conformer  < 1 Å 1 Å–2 Å  > 2 Å

Energy minimized X-rayppw 
ligand

40 5 0

Starting conformer 0 7 38
SMILES conformer 4 15 26
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may induce inversion of the original stereocenter. Accord-
ingly, a chirality check is used to reject conformations where 
this occurs. Therefore, avoiding stereocenters as ring clo-
sure atoms might increase the number of generated con-
formations by reducing the amount rejected due to altered 
stereochemistry. Applied on the 10 diverse macrocycles, 
the performance for both MCMM and MTLMOD when 
changing the ring opening width and ring-opening place-
ment were evaluated. As expected, avoiding ring-closures 
adjacent to chiral centers and increasing the ring opening 
width provided the highest number of unique ring confor-
mations (Table 5). This combination also generated at least 
one conformer within 2 Å RMSD to the X-rayppw conforma-
tion for all 10 macrocycles. We reasoned that the ability to 

generate many ring conformations when analysing macro-
cycles is of key importance and therefore these settings were 
used in all subsequent studies (termed MCMM-Enhanced 
and MTLMOD-Enhanced). A more detailed walkthrough 
of the modified parameters is described in section “Method 
Optimization Using a Diverse Subset of 10 Macrocycles” in 
the supporting information.

Comparing all search methods using the full data 
set of 44 macrocycles

To compare the general conformational search methods 
(MCMM, MTLMOD) with the more specialized macro-
cycle-sampling methods (MD/LLMOD, PRIME-MCS) we 
applied these methods on all macrocycles contained in the 
full data set. As the MCMM-Enhanced and MTLMOD-
Enhanced methods performed well for the diverse subset, 
these were also included in the comparison study. Methods 
were evaluated based on the following criteria; the ability 
to identify (i) unique conformers, (ii) unique macrocycle 
ring conformations, (iii) the global energy minimum, and 
(iv) the methods’ computational speed and (v) the ability 
to identify conformers similar to the X-rayppw conforma-
tion, and (vi) to the X-rayppw ring conformation. To evalu-
ate how well the different conformational search methods 
performed and to get an approximation of the search effi-
ciency, it would also be interesting to compare the gener-
ated conformational ensembles with the complete set of all 
possible conformers. However, as the number of conformers 
increases almost exponentially with the number of rotatable 
bonds, generation of such complete ensembles is difficult 
[64]. To at least address this challenge, the conformational 

Table 4   Computational times used in the conformational analysis of 
the ten macrocycles in the diverse subset using two different minimi-
zation methods

a The sum total of computational time (minutes) consumption for con-
formational analysis of ten macrocycles
b Monte Carlo Multiple Minimum
c Polak-Ribiere Conjugated Gradient
d Truncated Newton Conjugated Gradient
e Mixed torsional/Low-mode

Conformational search 
method

Energy minimization 
method

Compu-
tational 
timea

MCMMb PRCG​c 856
MCMMb TNCGd 544
MTLMODe PRCG​c 4109
MTLMODe TNCGd 551

Table 5   Summary of conformational analysis settings and results of the 10 macrocycles in the diverse subset

a The sum total of conformers generated
b The sum total of unique ring conformations generated
c The sum total of computational time (minutes) used for conformational analysis
d Number of macrocycles where the lowest energy conformer was identified or a conformer with an energy difference no greater than 1 kJ mol−1

e RMSD for the conformer identified with the lowest RMSD value to the X-ray ligand after protein preparation treatment (X-rayppw). The con-
formers are, dependent on their RMSD values, divided into three different groups with RMSD values: below 1 Å, between 1 Å–2 Å, and greater 
than 2 Å

Method Ring opening Ring closure 
distance (å)

No. confa No. unique 
ring confb

CPU 
time 
(min)c

Global energy mini-
mum found for no. 
Macrocyclesd

Best fit conformation 
RMSD (Å)e

 < 1 Å 1 Å–2 Å  > 2 Å

MCMM Standard 0.5–2.5 40,507 2482 666 4 7 0 3
MCMM Standard 0.1–5.0 40,946 5158 646 3 8 1 1
MCMM Standard 0–100 36,034 9326 813 5 7 3 0
MCMM Moved 0.5–2.5 41,538 2811 614 3 6 2 2
MCMM-Enhanced Moved 0–100 38,037 9402 800 5 7 3 0
MTLMOD Standard 0.5–2.5 29,417 4082 714 4 6 1 3
MTLMOD-Enhanced Moved 0–100 32,489 7574 704 3 8 2 0
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search methods examined in this work were benchmarked 
against an exhaustive MCMM run using 1,000,000 search 
steps. The MCMM method was used in this study because 
it is an efficient method for generating conformers and the 
most efficient in generating ring conformations. MCMM, 
MCMM-Enhanced, MTLMOD, MTLMOD-Enhanced and 
PRIME-MCS were run three times independently using dif-
ferent seeds. The settings used for the different methods are 
summarized in Table 6 and all results are summarized in 
Table 7. For those methods where 3 different seeds were 
used, the Max, Min and Average results for each method 
are presented.

PRIME-MCS employs, in comparison with other meth-
ods that use 15 kcal mol−1, a much wider energy window 
of 100 kcal mol−1 for saving conformers, which may result 
in a larger number of conformers generated. Furthermore, 
PRIME-MCS minimizations are performed in vacuum 
as compared to the GB/SA water solvation model that is 
used by the other methods. Therefore, whilst the results 
of PRIME-MCS are not directly comparable with the 
MCMM, MTLMOD and MD/LLMOD methods, they are 
still included as a comparison in all results except in the 
search for the global energy minimum.

Total number of conformers generated

For each of the three runs using different seeds, the sum of 
all conformers identified for all 44 macrocycles was cal-
culated for each search method. Since all methods except 
MD/LLMOD were run three times, the average number of 
conformers per run will be presented to allow a comparison 
between the methods. This number was calculated as the 
sum of identified conformers for each method divided by the 
number of runs that were made for that method. Across all 
search methods, MCMM generated the highest average num-
ber of conformers over all 44 macrocycles (155,296), see 
Table 7 and Table S9. MCMM-Enhanced identified 149,831 
conformers on average followed by MTLMOD-Enhanced 
(134,396), MTLMOD (117,490), MD/LLMOD (45,917), 
and PRIME-MCS (31,118).

In the 10,000 step runs, the variation in number of iden-
tified conformations using the three different seeds did not 
vary considerably within the different methods for each mac-
rocycle. The largest observed difference was for MCMM-
Enhanced with a variation of 7% between the highest and 
lowest number of generated conformations (see max/min in 
Table 7). For example, for 1BXO, which contains 24 rotat-
able bonds, MCMM-Enhanced generated 6141/5345/5963 
conformations out of 10,000 possible for each run.

With 155,296 identified conformers, MCMM produces 
a new conformer within the given energy window approxi-
mately every third iteration (440,000 possible conformers if 
every Monte Carlo step would generate a new conformer). 

Using 100 times as many search steps, the MCMM-Exhaus-
tive search identified about 48 times more conformers in 
total (7,528,356), as compared to the shorter MCMM pro-
tocol (discussed further in section “Conformational cover-
age—are we reaching convergence”) However, the MCMM-
Exhaustive searches were intended to serve as a benchmark 
in this study and generating large conformational ensembles 
can be problematic in terms of disk space, data handling and, 
downstream processing such as visual inspection, docking, 
pharmacophore modelling and quantum mechanical opti-
mizations, etc.

Number of unique ring conformations generated

As not all conformational sampling software support mac-
rocyclic ring sampling and since ring sampling in itself is 
not always easily performed, [36] we evaluated the different 
methods’ ability to generate unique ring conformations. This 
was defined as the sum of identified ring conformations for 
each method divided by number of runs that were made for 
that method. Whilst one could hypothesize that generating 
more conformers would also provide more ring conforma-
tions, the sum of all ring conformations identified by each 
method did not parallel the total number of generated con-
formers for the full data set. Instead, MCMM-Enhanced pro-
duced the largest number of ring conformations (49,324) 
followed by MTLMOD-Enhanced (41,040), PRIME-MCS 
(24,953), MTLMOD (23,367), MD/LLMOD (19,189) and 
MCMM (18,950) (Table 7 and Table S10). Thus, running 
MCMM and MTLMOD using adjusted settings regarding 
the ring opening bond (the enhanced settings) increased the 
number of generated ring conformations drastically. The 
MCMM-Exhaustive searches generated 967,844 ring con-
formations in total showing that with increased sampling 
more ring conformations could be found.

Identifying the global energy minimum

The ability of the methods to identify the global energy 
minimum was also evaluated. As minimization uses a GB/
SA solvation model in all methods except for PRIME-
MCS (vacuum), this method was not evaluated in this 
section. As MCMM-Exhaustive (1,000,000 search steps) 
identified the lowest energy conformer for all macrocy-
cles, this was considered as the global minimum. For the 
other methods, the global minimum energy was considered 
identified if a conformer within 1 kJ mol−1 of the global 
energy minima was generated. We also set out to investi-
gate if these conformers were geometrically identical to 
the global energy minima conformer. This was determined 
by first analyzing whether the global energy ring confor-
mation was identified and, secondly, whether the whole 
conformer was identified. The global energy conformer 
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and ring conformation were considered geometrically 
identical if the RMSD between the two conformers were 
below 0.1 Å RMSD when using either all heavy atoms pre-
sent or just those of the macrocyclic ring, respectively. The 

mirror-image conformers of the global energy minimum 
were considered identical in this analysis.

To compare the ability of different methods to identify 
the global energy minimum using 10,000 search steps, the 

Table 7   Summary of conformational analysis results for the full data set of 44 macrocycles

a The sum total of conformers generated
b The sum total of unique ring conformations
c The sum total of computational time (minutes) used for conformational analysis
d Number of macrocycles where the lowest energy conformer was identified or a conformer with an energy difference not greater than 1 kJ mol−1 
and an RMSD below 0.1 Å to the global energy conformer using all heavy atoms
e RMSD for the conformer identified with the lowest RMSD value to the X-ray ligand after protein preparation treatment (X-rayppw). The con-
formers are, dependent on their RMSD values, divided into three different groups with RMSD values: below 1 Å, between 1–2 Å, and greater 
than 2 Å
f RMSDRING for the conformer identified with the lowest RMSDRING value to the heavy ring atoms in the X-ray ligand after protein preparation 
treatment. The conformers are, dependent on their RMSD values, divided into three different groups with RMSD values: below 0.5 Å, between 
0.5–1 Å, and greater than 1 Å. 3BXR consist of two macrocyclic rings, therefore 46 (instead of 45) RMSDRING values are presented
g Not Applicable
h Run three time using different seeds.
i MD/LLMOD was run one time

Method No. confa No. unique 
ring confb

Computa-
tional time 
(min)c

Global energy mini-
mum found for no. 
macrocyclesd

Best fit conformation 
RMSD (Å)e

RMSDRING (Å)f

 < 1 Å 1 Å–2 Å  > 2 Å  < 0.5 Å 0.5 Å–1 Å  > 1 Å

Energy minimized 
X-rayppw ligand

NAg NAg NAg NAg 40 5 0 45 1 0

Starting conformer NAg NAg NAg NAg 0 7 38 3 19 24
SMILES conformer NAg NAg NAg NAg 4 15 26 5 25 16
MCMMh

Average 155,296 18,950 3740 48% (63/132) 37 6 2 38 8 0
Max 159,973 20,274 4138 NAg 42 0 3 42 2 2
Min 150,558 17,840 3340 NAg 32 13 0 35 11 0
MTLMODh

Average 117,490 23,367 4125 48% (64/132) 35 8 2 39 6 1
Max 121,147 25,015 4468 NAg 39 5 1 42 1 3
Min 113,512 21,804 3806 NAg 31 10 4 37 9 0
MCMM-Enhancedh

Average 149,831 49,324 4642 52% (68/132) 40 5 0 44 2 0
Max 155,304 52,181 5022 NAg 41 4 0 45 1 0
Min 144,227 46,906 4325 NAg 35 10 0 40 6 0
MTLMOD-Enhancedh

Average 134,396 41,040 4182 50% (66/132) 36 9 0 45 1 0
Max 137,988 42,589 4515 NAg 41 3 1 46 0 0
Min 130,954 39,443 3932 NAg 32 13 0 41 5 0
MD/LLMODi

Average 45,917 19,189 4163 55% (24/44) 31 11 3 38 8 0
Max NA NA NA NAg NA NA NA NA NA NA
Min NA NA NA NAg NA NA NA NA NA NA
PRIME-MCSh

Average 31,118 24,953 9791 NAg 24 19 2 35 11 0
Max 31,286 25,122 9804 NAg 24 19 2 37 9 0
Min 30,952 24,795 9779 NAg 22 21 2 34 12 0
MCMM-Exhaustive 7,528,356 967,844 925,026 45 44 1 0 46 0 0
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percentage of runs in which these conformations were iden-
tified was calculated. By only considering the energy, MD/
LLMOD identified the global energy minima in 64% of 
the conformational searches (28/44), whereas MTLMOD-
Enhanced and MCMM-Enhanced identified a conformer 
within 1 kJ mol−1 from the global energy minimum for 60% 
(79/132) and 59% (78/132) of the runs, respectively, see 
Table 7 and Table S11. MCMM and MTLMOD found the 
global energy minimum for and 57% (75/132), 56% (74/132) 
of the runs, respectively. Consequently, when using the 
enhanced settings, both MCMM and MTLMOD performed 
slightly better. Since the success rate of finding a conformer 
within 1 kJ mol−1 from global minimum ranged between 56 
and 64%, this suggests that the 10,000 search steps might 
not be adequate for finding the global minimum for macro-
cycles. However, considering the number of rotatable bonds 
a macrocycle may have and, consequently, the large number 
of conformers that may exist, the probability of generating 
the global energy minimum should be rather low. Thus, the 
low success rates of generating the global energy minimum 
are not surprising.

By requiring that the ring conformation should be iden-
tical to that of the global energy minimum, MD/LLMOD 
instead identified the global energy minima in 61% (27/44) 
of the conformational searches. This was followed by 
MCMM-Enhanced 57% (75/132), MTLMOD-Enhanced 
55% (73/132), MTLMOD 54% (71/132) and, MCMM 53% 
(70/132). Using the strictest definition were the whole (all 
heavy atoms) global energy minima conformer needs to be 
identical, MD/LLMOD identified the global energy minima 
in 55% (24/44) of the conformational searches, followed by 
MCMM-Enhanced 52% (68/132), MTLMOD-Enhanced 
50% (66/132), MTLMOD 48% (64/132) and, MCMM 48% 
(63/132). In summary, MD/LLMOD generated the global 
energy minima most frequently of the evaluated methods 
across all three definitions of the global energy minima.

The challenge of identifying the global energy minimum for 
a given macrocycle can be estimated by the number of times 
it is found over 13 different runs (3 MCMM runs, 3 MCMM-
Enhanced runs, 3 MTLMOD runs, 3 MTLMOD-Enhanced 
runs and 1 MD/LLMOD run) [44]. For each macrocycle, the 
relationship between the number of times the methods found 
the global energy minimum (using the all heavy atoms defi-
nition) and the number of rotatable bonds is shown in Fig. 2 
below. For example, all 13 methods identified the global 
energy minimum for 1S9D (15 rotatable bonds), while none 
of the methods found the global energy minima for 1NSG 
(46 rotatable bonds). As expected, the methods are more suc-
cessful for identifying the global energy minimum for less 
flexible macrocycles (less than 20 rotatable bonds, dotted line 
in Fig. 2). In contrast, this is more challenging for flexible 
macrocycles with more than 33 rotatable bonds (grey area in 
Fig. 2). This suggests that if the aim is to generate the global 

energy minimum for a macrocycle with many rotatable bonds, 
more extensive conformational sampling than 10 000 search 
steps is required. For nine macrocycles, none of the methods 
except MCMM-Exhaustive were able to identify the global 
energy minimum (1FKD, 1FKI, 1NMK, 1NSG, 1TPS, 2ASP, 
2DG4, 3BXS and 4NNR). These compounds contain some 
of the largest ring structures in the data set except 3BXS. In 
3BXS none of the methods identified the correct valine side-
chain orientation.

Computational speed

The computational speed per method is given as the average 
CPU-time to sample the 44 macrocycles (total CPU time/
number of seeds). The fastest method overall, was MCMM 
(3740  min) followed by MTLMOD (4125  min), MD/
LLMOD (4163) MTLMOD-Enhanced (4182 min), MCMM-
Enhanced (4642 min) and PRIME-MCS (9791 min), see 
Table  7 and Table  S12. PRIME-MCS (9791  min) was 
thereby roughly twice as slow in comparison to the second 
slowest method MCMM-Enhanced (5345 min). MCMM-
Exhaustive ran for 925,026 min, i.e. almost 2 years, in total 
(median 17,412 min, approximately 12 days per macrocy-
cle). Other conformational sampling methodologies requir-
ing up to 7 days on a 100 CPU cluster have been published 
[37]. However, this amount of conformational sampling is 
rarely described. Thus, using MCMM-Exhaustive is prob-
ably unreasonably lengthy for most modelling projects in the 
field of drug discovery.

Fig. 2   Relationship between rotatable bonds defined as the number of 
torsion angles sampled per macrocycle and the number of times the 
global energy minima were identified using the different methods (13 
runs per macrocycle using 6 different methods)
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Generating a conformation similar to the X‑rayppw 
conformation

The ability to generate conformers similar to the bioactive 
conformation in the X-ray structure (best-fit conformation 
in Table 7) was analysed by calculating the RMSD between 
all conformers for each macrocycle and the X-ray ligand 
after Protein Preparation Wizard treatment (the X-rayppw 
conformation). Structures downloaded from the PDB are 
interpretations of electron densities and therefore models 
that may contain errors, especially in the ligand structures 
[68-71]. Therefore, we allowed for “adjusting” distorted 
bond angles and lengths, etc., in protein–ligand complexes 
and thereby aligning the structures to the force field. Thus, 
we used the X-rayppw conformation as the X-ray structure 
in all comparisons. When available, the fit to the electron 
density was evaluated for the protein-macrocycle complexes 
after the restrained energy minimization. The conformer 
most similar to the X-rayppw conformation was grouped in 
one of the following categories based on the RMSD value; 
below 1 Å, between 1 Å–2 Å and greater than 2 Å. All non-
hydrogen atoms were considered for the RMSD calculations. 
Furthermore, since one of the complexes (3BXS) contains 
the macrocycle bound to two separate binding sites with dif-
ferent conformation, 45 instead of 44 macrocycles extracted 
from protein-macrocycle complexes were evaluated in this 
section. The median RMSD value between the X-ray ligand 
structure before and after protein preparation wizard treat-
ment was 0.19 Å. For methods run in triplicate, the mean 
value is presented.

Furthermore, to explore the local minimum closest to the 
X-rayppw conformation we energy minimized the X-rayppw 
structure and compared it with the X-rayppw conformation 
(“energy minimized X-rayppw ligand” in Table 7). 40 out of 
the 45 macrocycles had a local minimum with RMSD values 
below 1 Å when superimposed on the X-rayppw structure, 
and five energy minimized X-rayppw conformers had RMSD 
values between 1 and 2 Å, see also Table S13.

The different methods’ ability to generate conformers 
similar to the X-rayppw conformation can be seen in Table 7 
(“best fit conformation”), Table S13 and Table S14. Analys-
ing the results below 1 Å RMSD, the MCMM-Exhaustive 
searches were able to identify such conformers for 44 out 
of 45 macrocycles. The RMSD for 1TPS was 1.22 Å and 
this macrocycle contained the highest number of rotatable 
bonds (47), which could be a reason for this. The second 
best search method was MCMM-Enhanced (40 of 45 mac-
rocycles), followed by MTLMOD-Enhanced (36 out of 45 
macrocycles). The more specialized methods MD/LLMOD 
and PRIME-MCS searches generated a conformer below 1 Å 
RMSD for 31 and 24 macrocycles, respectively. The results 
from the MCMM-Exhaustive search imply that conformers 
very close to the X-rayppw conformations can be generated 

if the sampling is sufficiently increased. Surprisingly, when 
comparing the MCMM-Enhanced and the MTLMOD-
Enhanced searches with the MCMM-Exhaustive search the 
results are not dramatically different. Thus, 10,000 search 
steps seems to be adequate for generating a conformer close 
to the X-rayppw conformation for the enhanced methods. 
Overall, the general methods seemed more efficient at gen-
erating conformers close to the X-rayppw conformations in 
comparison to the more specialized methods. A visual over-
view of how the different methods performed is depicted in 
Fig. 3.

Generating the X‑rayppw ring conformation

Most of the published macrocycle sampling studies have 
focused on the RMSD to the macrocyclic ring atoms as 
found in the X-ray. Thus, as a final comparison, we wanted 
to evaluate if the methods examined here could identify a 
ring conformation similar to the X-rayppw ring conforma-
tion (RMSDRING). These results are summarized in Table 7 
and are presented in greater detail in Tables S15 and S16. 
For 3BXR, which consists of two macrocyclic rings, an 
RMSDRING value was calculated for each ring separately. 
Therefore, 46 RMSD values instead of 45 will be presented 
in this section. For methods run in triplicates, the mean value 
is presented.

Ideally, a conformational search method should be able to 
identify a conformer below 0.5 Å RMSDRING (a commonly 
used threshold [33, 36, 38]). Analysing the results of the 
benchmarking methods MCMM-Exhaustive and the energy 

Fig. 3   All heavy-atoms RMSD. The mean RMSD value was used for 
those methods that were run more than one time. The cumulative per-
formance describing how successful the methods are at generating a 
conformer close to the X-rayppw conformation is shown. The perfor-
mance is benchmarked against the energy minimized X-rayppw con-
formations (shown by the pink line near the bottom) and an exhaus-
tive MCMM run (1,000,000 search steps shown by the purple line at 
the bottom)
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minimized X-rayppw structures, these methods were able to 
identify a conformer below 0.5 Å RMSDRING in 46 and 45 
cases out of the 46 macrocyclic rings, respectively. Ana-
lysing the results obtained with the other methods, they all 
had a median RMSDRING below 0.5 Å. However, MCMM-
Enhanced and MTLMOD-Enhanced most accurately regen-
erated the macrocyclic ring conformation and both meth-
ods identified a conformer below 0.5 Å RMSDRING in 44 
out of the 45 cases. For comparison, the third best method 
MTLMOD identified such a conformer for 39 out of the 
46 macrocyclic rings. Compared to the other methods in 
Fig. 4, MCMM-Enhanced and MTLMOD-Enhanced seem 
to be more efficient at generating a ring conformations close 
to the X-rayppw ring conformation.

Comparing the results with prior work in the field

Several recent publications have studied the conformational 
preference of macrocycles and presented new conforma-
tional sampling methods. However, a direct comparison of 
these methods with those presented in this study is difficult 
since the datasets differ and the energies, number of con-
formers and ring conformations, may change significantly 
depending on, for example, what force field has been used. 
Another challenge with such comparisons is that small 
changes in programme settings can change the internal 
rankings between the methods. Despite this, we compared 
the ability of the methods presented in each paper to repro-
duce the X-ray structure (X-ray accuracy). Specifically, 
we analyzed the methods ability to re-generate the X-ray 

conformation with respect to all heavy-atoms RMSD, as well 
as the backbone (ring) atoms RMSDRING (see Table 8). As 
it is not meaningful to directly compare the results between 
different studies, we only looked at the internal order of the 
different methods in each paper with respect to RMSD val-
ues. The comparison starts with the well-cited work from 
Chen and Foloppe [44] where MD/LLMOD and MTLMOD, 
among other methods were evaluated, followed by an anal-
ysis of the publications where the MD/LLMOD [32] and 
PRIME-MCS [33] methods were published. Finally, we 
included the publications that introduces the new methods 
BRIKARD [35], PLOP [36], and ForceGen [34]. In all the 
publications above, with the exception of ForceGen, the 
MD/LLMOD method has been included, which allows it 
to serve as a reference method in the current analysis (the 
results of MD/LLMOD are shown in bold in Table 8).

Chen and Foloppe evaluated several different settings 
on a series of conformational sampling methods with the 
aim of optimizing search efficiency. The optimal settings 
derived are presented with the prefix “CF-” below and in 
Table 6. Unfortunately, not all heavy-atoms RMSD values 
were reported in this study but instead the number of X-ray 
structures that were reproduced within an RMSD of 1 Å. 
The CF-MTLMOD method was the most accurate in gen-
erating conformers below 1 Å RMSD (79%) followed by 
CF-MD/LLMOD (77%), MOE LowModeMD (72%), and 
MOE stochastic search (53%) [44].

Watts et al. presented the MD/LLMOD method and a 
macrocycle data set consisting of 67 PDB structures (150 
structures in total) [32]. This data set, as well as the MD/
LLMOD method, has been used in several other studies. 
Applied on the 67 PDB structures, Watts et al. reported a 
median heavy-atom RMSD of 1.14 Å (values reported in 
supporting information in ref [32]) compared to the X-ray 
structure).

Sindhikara et al. used 60 out of the 67 macrocycles in the 
Watts et al. data set and included the MD/LLMOD method, 
a molecular dynamics simulation method (simulations were 
run for 24 ns), and MOE LowModeMD [31] as reference 
methods when they presented and evaluated the PRIME-
MCS method [33]. Applied on those 60 PDB structures, Sin-
dhikara et al. reported the median all heavy-atom RMSD val-
ues to the X-ray structure to be the lowest for MD/LLMOD 
(1.10 Å), followed by PRIME-MCS (1.49 Å), MOE LowM-
odeMD (1.69 Å), and molecular dynamics (1.89 Å) (values 
reported in supporting information in ref [33]). The median 
RMSDRING values followed a pattern analogues to the all 
heavy-atom RMSD values. The lowest median RMSDRING 
value was obtained for MD/LLMOD (0.38 Å) followed by 
PRIME-MCS (0.40 Å), MOE LowModeMD (0.41 Å), and 
molecular dynamics (0.56 Å) (values reported in support-
ing information in ref [33]). Thus, in both cases, the MD/

Fig. 4   Ring atoms RMSD. The mean RMSD value was used for those 
methods that were run more  than one time. The cumulative perfor-
mance describing how successful the methods are at generating a 
conformer close to the X-rayppw conformation is shown. The perfor-
mance is benchmarked against the energy minimized X-rayppw con-
formations (shown by the pink line near the bottom) and an exhaus-
tive MCMM run (1,000,000 search steps shown by the purple line at 
the bottom)



246	 Journal of Computer-Aided Molecular Design (2020) 34:231–252

1 3

LLMOD method had the best accuracy for reproducing the 
X-ray conformation.

In a study by Coutsias et al., a new method called BRI-
KARD was presented [35]. To evaluate BRIKARD, Cout-
sias et al. collected a data set of 67 structures, of which 39 
originated from the PDB. BRIKARD was benchmarked 
against MD/LLMOD, as well as the optimized methods 
CF-MD/LLMOD and CF-LowModeMD from the work of 
Chen and Foloppe (see Table 6 for settings). Using all 
67 structures, BRIKARD had a median RMSDRING value 
of 0.47 Å followed by CF-MD/LLMOD (0.54 Å), MD/
LLMOD (0.63 Å) and CF-LowModeMD (0.64 Å) (values 
calculated from supporting information in ref [35]). Thus, 
BRIKARD seems to reproduce the ring conformation 

slightly better than MD/LLMOD. However, when com-
paring the X-ray ring accuracy for the PDB structures 
only, the differences between the methods were smaller. 
For the 39 structures originating from the PDB, the 
median RMSDRING was 0.42 Å for BRIKARD, followed 
by CF-MD/LLMOD (0.47 Å), MD/LLMOD (0.49 Å), and 
CF-LowModeMD (0.54  Å) (median values calculated 
from supporting information in ref [35]).

Wang et al. developed the PLOP method based on 37 
macrocycles originating from both the PDB and CSD [36]. 
In their study, MD/LLMOD and PLOP were compared 
based on how well the backbone (ring atoms) were repro-
duced. The optimized protocol of PLOP was able to repro-
duce the crystal structure within 0.50 Å RMSDRING for 31 

Table 8   Summary of the X-ray accuracy reported in the literature

In all the publications above (exception of ForceGen), the MD/LLMOD method (shown in bold) has been included, which allows it to serve as a 
reference method
a Percent of macrocycles in the data set that the methods successfully generated a conformer below 1 Å RMSD to the X-ray conformation using 
all heavy atoms
b Median RMSD using all heavy atoms
c Median RMSD using all only the heavy atoms in the macrocyclic ring
d Not Applicable
e Optimized settings presented by Chen and Foloppe

Method Authors Data set (total no. structures/
PDB structures)

% Below 
1 Å 
RMSDa

Median RMSD (Å)b Median RMSDRING (Å)c

MD/LLMOD Chen and Foloppe [44] Chen and Foloppe (30/30) 77 NAd NAd

CF-MTLMODe 79 NAd NAd

MOE LowModeMD 72 NAd NAd

Stochastic search 53 NAd NAd

MD/LLMOD Watts et al. [32] Watts et al. (150/67) NAd 1.14 NAd

MD/LLMOD Sindhikara et al. [33] Watts et al. (208/60)
60 PDB structures from Watts 

et al.

NAd 1.10 (PDB) 0.38 (PDB)
PRIME-MCS NAd 1.49 (PDB) 0.40 (PDB)
MOE LowModeMD NAd 1.69 (PDB) 0.41 (PDB)
Molecular dynamics 

simulation (24 ns)
NAd 1.89 (PDB) 0.56 (PDB)

BRIKARD Coutsias et al. [35] Coutsias et al. (67/39) NAd NAd 0.47 (all), 0.42 (PDB)
CF-MD/LLMODe NAd NAd 0.54 (all), 0.47 (PDB)
MD/LLMOD NAd NAd 0.63 (all), 0.49 (PDB)
CF-LowModeMDe NAd NAd 0.64 (all), 0.54 (PDB)
PLOP Wang et al. [36] Wang et al. (37/12) NAd NAd 0.25 (70% below 0.5 Å)
MD/LLMOD NAd NAd NAd (64% below 0.5 Å)
CF-MTLMODe Cleves and Jain [34] Chen and Foloppe

(30/30)
NAd NAd NAd

CF-LowModeMDe NAd NAd NAd

ForceGen NAd NAd NAd

MCMM Current work 2019 Alogheli and Watts et al. 
(44/44)

31 PDB structures from Watts 
el al.

78 0.58 0.16
MCMM-Enhanced 84 0.58 0.16
MTLMOD-Enhanced 89 0.59 0.17
MTLMOD 78 0.77 0.18
MD/LLMOD 69 0.78 0.20
PRIME-MCS spinroot 30 51 0.98 0.27
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out of 37 macrocycles with a median RMSDRING value of 
0.25 Å. Wang et al. concluded that the performance of PLOP 
was not statistically different compared to MD/LLMOD.

Cleves and Jain compared the performance of ForceGen, 
CF-LowModeMD and CF-MTLMOD using the Chen and 
Foloppe data set (30 PDB structures) [34]. Applied on those 
macrocycles, CF-LowModeMD showed equivalent repro-
duction of the X-ray conformation (all heavy-atoms) com-
pared to ForceGen, whereas CF-MTLMOD showed margin-
ally better results compared to ForceGen.

To summarize, as shown from the studies above, the 
specialized macrocycle sampling method MD/LLMOD is 
able to reproduce the X-ray structures accurately, generat-
ing better or comparable results to other methods in prior 
publications. Interestingly, we have shown that by using 
slightly tweaked versions of the general methods, such as 
MCMM-Enhanced and MTLMOD-Enhanced, X-rayppw 
accuracy results comparable to, or even better than, MD/
LLMOD may be obtained at least for the data set and param-
eters used in this study. Therefore, to further explore the 
general methods abilities, including MCMM-Enhanced and 
MTLMOD-Enhanced in future method comparison studies 
could be of interest.

Conformational coverage—are we reaching 
convergence

The absolute degree of conformational space covered in a 
conformational search is often difficult to describe [72, 73]. 
In the literature, parameters such as the number of confor-
mations identified, the number of times the lowest energy 
conformation is visited, the range of compactness/extended-
ness covered by the conformations as described by the radius 
of gyration, and the number of visited 3D pharmacophore 
points have been considered [31, 44]. Full conformational 
coverage can also be defined as when all possible conform-
ers within a specified energy window have been found. As 
macrocycles are said to be conformationally restricted, we 
aimed to explore the conformational space in a more exhaus-
tive way than is typical.

Since the shape of the energy hypersurface is force field 
dependent, the number of possible low-energy conformers 
varies between the force fields. Quantum mechanical meth-
ods would also most likely change the number of possible 
low-energy conformers. However, since most drug design 
projects are carried out in a molecular mechanics force field 
environment, we were interested to explore how many con-
formers that energy hypersurface contains. Therefore, we ran 
the MCMM-Enhanced search with 1,000,000 search steps 
(MCMM-Exhaustive) for the full data set (44 macrocycles). 
The results were visualized by plotting the number of search 
steps against the number of conformations generated within 
15 kcal mol−1 from the global energy minimum (Fig. 5a 

depicts the 10 examples, chosen to represent the structur-
ally diverse range of macrocycles). Our results show that the 
number of conformers generated increases steadily for all 
macrocycles, with the exception of 3JRX and 2HFK/2J9M, 
which are on top of each other. These three macrocycles 
have relatively small macrocyclic ring systems (12, 14 and 
15, respectively) and are not extensively substituted. As 
these macrocycles have the smallest number of torsional 
angles they are therefore, expected to have fewer conforma-
tions, for example, in comparison with 1S22. This macro-
cycle contains a much larger ring system, substituted with 
a large flexible side-chain thereby increasing the degrees or 
torsional freedom. Thus, after 1,000,000 search steps, full 
conformational coverage has, as expected, not been reached 
for the majority of the ten displayed macrocycles. For the 
full data set, MCMM produced 155,846 conformers whereas 
MCMM-Exhaustive identified 7,528,356, corresponding to 
roughly 48 times more conformers than MCMM.

As expected, when examining the number of generated 
conformations within a narrower energy window (e.g. 10 
and 5 kcal mol−1, in Fig. 5b and c, respectively) the rate 
of conformer generation decreases for most of the macro-
cycles. As seen in Fig. 5b, for six out of ten macrocycles 
(2HFK, 2J9M, 2DG4, 2XBK, 3I6O and, 3JRX) the rate of 
conformer generation decreases. Within 5 kcal mol−1, all but 
one (1S22) of the ten conformational searches asymptoti-
cally approaches full coverage (Fig. 5c).

Looking further at the energy distribution for all conform-
ers of the 10 macrocycles, the vast majority of the conform-
ers have a relative energy above 10 kcal mol−1. For a more 
thorough discussion about the energy distribution, see sec-
tion “Conformational coverage and conformational energy 
distribution.” in the supporting information.

Energy window for sampling macrocycles

Numerous studies have been performed to understand the 
conformational energy cost when a ligand binds to its target. 
Some argue that the acceptable conformational energy pen-
alty is relatively low (below 3 kcal mol−1 [74, 75], mostly 
below 5 kcal mol−1 [76], between 4 and 6 kcal mol−1 [77], 
and mostly below 6 kcal mol−1 [78]) However, energies, 
above 9 kcal mol−1 [76], around 15.9 ± 11.5 kcal mol−1 
[79], between 0  –  25  kcal  mol−1 [80], and even up to 
27 kcal mol−1 [81], have been suggested as feasible for pro-
tein-bound ligands. For conformational sampling of macro-
cycles, Chen and Foloppe noticed an improved reproduction 
of the X-ray conformation for MTLMOD using an increased 
energy window of up to 15 kcal mol−1 [44]. Also, Alogheli 
et al. used a 15 kcal mol−1 energy window and found that the 
conformer closest to the energy minimized X-ray structure 
averaged around 5 kcal mol−1 from the global minimum with 
the largest difference being 10.8 kcal mol−1 (almost the same 
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data set as in this study and energies were calculated with 
OPLS-2005) [40].

Calculating the conformational energy penalty upon bind-
ing has been discussed rigorously in the literature and has 
recently been summarized by Peach [82]. Thus, no attempts 
tackling this subject will be made herein. However, as many 
modeling methods utilize an energy window for generating 
conformers, the width of this window is of great importance. 

Therefore, two energy differences were calculated and ana-
lyzed. The first between the global energy minimum and the 
energy minimized X-rayppw structure and the second between 
the global energy minimum and the MCMM-Exhaustive 
generated conformer closest to the X-rayppw structure. As 
mentioned in section "Generating a Conformation Simi-
lar to the X-rayppw Conformation", the conformer derived 
by energy minimizing the X-rayppw conformation should 

Fig. 5   Number of generated conformers for the ten macrocycles in 
the diverse subset within: a 15  kcal  mol−1; b 10  kcal  mol−1; and c 
5  kcal  mol−1 from the lowest energy conformer using 1,000,000 
search steps in total. The discontinuities in the lines are due to elimi-

nation of high energy conformers when a new “global energy mini-
mum” is generated during the search. The line for 1S22 in plot (B) 
do not reach 1 million steps because only up to 100,000 conformers 
within 10 kcal mol−1 are registered in the .log-file
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correspond to the minimum closest to the X-rayppw confor-
mation. Therefore, with the aim of generating conformers 
closest to the bioactive conformation, the energy difference 
to this conformation could serve as an upper cut-off value 
for keeping conformers. The energy difference between the 
minimized X-rayppw conformation and the global minimum 
varied between 0 and 13.7 kcal mol−1, with a median value 
of 5.6 kcal mol−1 (Table S17). Therefore, the energy window 
of 15 kcal mol−1 used herein seems appropriate. It should 
be noted that only five out of the 45 macrocycles had energy 
differences exceeding 10 kcal mol−1.

As previously mentioned, the MCMM-Exhaustive 
searches were able to generate conformations similar to 
the X-rayppw structure (< 1 Å) for all but one of the 45 
protein-macrocycle complexes, see Tables  7 and S13. 
When the energy difference between these conformations 
and the corresponding global energy minimum (gener-
ated by any method) was analyzed it varied between 0 
and 21.4 kcal mol−1 with a median of 6.6 kcal mol−1 (see 
Table S17). The conformation closest to the X-rayppw con-
formation was found within 5 and 10 kcal mol−1 for 19 and 
33 of the macrocycles, respectively.

Considering both energy differences, a 15 kcal mol−1 
energy window for keeping conformers seems appropriate. 
However, there are many cases where an energy window of 
10 kcal mol−1 or even 5 kcal mol−1, could be used instead.

Conclusions

The present work has addressed macrocycle conforma-
tional sampling. We evaluated the performance of two of 
the commonly used, general-purpose conformational sam-
pling methods and compared them with two more recent 
and specialized macrocycle sampling approaches. We also 
determined that using TNCG as the energy minimization 
method and combining it with wider ring closure distance 
settings (0–100 Å) and avoiding ring open bonds adjacent 
to chiral carbons for MCMM and MTLMOD may be used 
to enhance macrocycle sampling. Moreover, we have shown 
that generating a starting conformation from a SMILES-
string to a 3D-structure, in some cases, might produce a 
conformation similar to the X-rayppw conformation. Thus, in 
all studies attempting to reproduce experimental data such 
as X-ray structures, the structural similarities between the 
starting conformation and the X-ray conformation should be 
analysed. Furthermore, as verified in the current study and 
by others, the stochastic nature of conformational sampling 
may influence the results. Consequently, we recommend 
assessing how stochastic elements inherent to a given search 
method affects these outcomes by either employing different 
starting conformations or different seeding.

Our comparative analysis of different sampling meth-
ods showed that, in most cases, the general conformational 
search methods (MCMM, MTLMOD) with standard and 
enhanced settings compared well with the more specialized 
macrocycle sampling methods (MD/LLMOD and PRIME-
MCS). However, if the aim is to generate a large pool of 
conformers or a conformer close to the X-rayppw structure, 
any of the general methods could be recommended. The 
encouraging results of MCMM-Enhanced and MTLMOD-
Enhanced suggest that conformational sampling of mac-
rocycles might be manageable when it comes to the gen-
eration of conformers close to the X-rayppw conformation. 
However, if the aim is to identify the global minimum, more 
than 10,000 steps are required. Of the methods evaluated, 
the MD/LLMOD method performed the best in generating 
the global energy minimum.
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