Skip to main content
Log in

Predictive potential of eigenvalue-based topological molecular descriptors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This study is directed toward assessing the predictive potential of eigenvalue-based topological molecular descriptors. The graph energy, Estrada index, resolvent energy, and the Laplacian energy were tested as parameters for the prediction of boiling points, heats of formation, and octanol/water partition coefficients of alkanes. It was shown that an eigenvalue-based molecular descriptor cannot be individually used for successful prediction of these physico-chemical properties, but the first Zagreb index, the number of zeros in the spectrum and the number of methyl groups must be also involved in the models. Performed statistics show that the models constructed using the Estrada index and resolvent energy are significantly better than ones with the energy of a graph and the Laplacian energy. Such a trend is even more noticeable in the case of octanol/water partition coefficients of alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roу K, Kar S, Das RN (2015) A primer on QSAR/QSPR modeling–fundamental concepts. Springer, Cham

    Google Scholar 

  2. Estrada E, Torres L, Rodrigues L, Gutman I (1998) An atom–bond connectivity index: modelling the enthalpy of formation of alkanes. Indian J Chem 37A:849–855

    CAS  Google Scholar 

  3. Zavitsas AA, Matsunaga N, Rogers DW (2008) Enthalpies of formation of hydrocarbons by hydrogen atom counting. Theoretical implications. J Phys Chem A 112:5734–5741. https://doi.org/10.1021/jp801152t

    Article  CAS  PubMed  Google Scholar 

  4. Yu J, Sumathi R, Green WH (2004) Accurate and efficient method for predicting thermochemistry of polycyclic aromatic hydrocarbons-bond-centered group additivity. J Am Chem Soc 126:12685–12700. https://doi.org/10.1021/ja048333+

    Article  CAS  PubMed  Google Scholar 

  5. Redžepović I, Marković S, Furtula B (2019) On structural dependence of enthalpy of formation of catacondensed benzenoid hydrocarbons. MATCH Commun Math Comput Chem 82:663–678

    Google Scholar 

  6. Allison TC, Burgess DR (2015) First-principles prediction of enthalpies of formation for polycyclic aromatic hydrocarbons and derivatives. J Phys Chem A 119:11329–11365. https://doi.org/10.1021/acs.jpca.5b07908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Teixeira AL, Leal JP, Falcao AO (2013) Random forests for feature selection in QSPR models—an application for predicting standard enthalpy of formation of hydrocarbons. J Cheminf 5:9–24. https://doi.org/10.1186/1758-2946-5-9

    Article  CAS  Google Scholar 

  8. Dudek AZ, Arodz T, Galvez J (2006) Computational methods in developing quantitative structure–activity relationships (QSAR): a review. Comb Chem High Throughput Screen 9:213–228. https://doi.org/10.2174/138620706776055539

    Article  CAS  PubMed  Google Scholar 

  9. Todeschini T, Consonni V (2009) Molecular descriptors for chemoinformatics. Wiley, Weinheim. https://doi.org/10.1002/9783527628766

    Book  Google Scholar 

  10. Mauri A, Consonni V, Todeschini R (2016) Molecular descriptors. Handbook of computational chemistry. Springer, Cham. https://doi.org/10.1007/978-94-007-6169-8_51-1

    Book  Google Scholar 

  11. Devillers J, Balaban AT (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon & Breach, Amsterdam

    Google Scholar 

  12. Talevi A, Bellera CL, Di Ianni M, Duchowicz PR, Bruno–Blanch LE, Castro EA (2012) An integrated drug development approach applying topological descriptors. Curr Comput Aided Drug Des 8:172–181. https://doi.org/10.2174/157340912801619076

    Article  CAS  PubMed  Google Scholar 

  13. Zanni R, Galvez–Llompart M, García–Domenech R, Galvez J (2015) Latest advances in molecular topology applications for drug discovery. Expert Opin Drug Discov 10:945–957. https://doi.org/10.1517/17460441.2015.1062751

    Article  CAS  PubMed  Google Scholar 

  14. Dearden JC (2017). In: Roy K (ed) Advances in QSAR modeling—applications in pharmaceutical, chemical, food, agricultural and environmental sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-56850-8_2

    Chapter  Google Scholar 

  15. Li X, Shi Y, Gutman I (2012) Graph energy. Springer, New York. https://doi.org/10.1007/978-1-4614-4220-2

    Book  Google Scholar 

  16. Diudea MV, Pirvan–Moldovan A, Pop R, Medeleanu M (2018) Energy of graphs and remote graphs in hypercubes, rhombellanes and fullerenes. MATCH Commun Math Comput Chem 80:835–852

    Google Scholar 

  17. Ma X (2019) A low bound on graph energy in terms of minimum degree. MATCH Commun Math Comput Chem 81:393–404

    Google Scholar 

  18. Estrada E (2000) Characterization of 3D molecular structure. Chem Phys Lett 319:713–718. https://doi.org/10.1016/S0009-2614(00)00158-5

    Article  CAS  Google Scholar 

  19. Hayat S, Imran M, Liu JB (2019) Correlation between the Estrada index and π-electronic energies for benzenoid hydrocarbons with applications to boron nanotubes. Int J Quantum Chem. https://doi.org/10.1002/qua.26016

  20. Gutman I, Furtula B, Zogić E, Glogić E (2016) Resolvent energy of graphs. MATCH Commun Math Comput Chem 75:279–290. http://match.pmf.kg.ac.rs/electronic_versions/Match75/n2/match75n2_279-290.pdf

    Google Scholar 

  21. Das KC (2019) Conjectures on resolvent energy of graphs. MATCH Commun Math Comput Chem 81:453–464

    Google Scholar 

  22. Redžepović I, Furtula B (2020) On relationships of eigenvalue–based topological molecular descriptors. Acta Chim Slov 67:312–318. https://doi.org/10.17344/acsi.2019.5520

    Article  CAS  Google Scholar 

  23. Redžepović I, Furtula B (2020) On degeneracy of A-eigenvalue-based molecular descriptors and r-equienergetic chemical trees. MATCH Commun Math Comput Chem 84:385–397

    Google Scholar 

  24. Gutman I, Zhou B (2006) Laplacian energy of a graph. Lin Algebra Appl 414:29–37. https://doi.org/10.1016/j.laa.2005.09.008

    Article  Google Scholar 

  25. Basak S, Niemi G, Veith G (1991) Predicting properties of molecules using graph invariants. J Math Chem 7:243–272. https://doi.org/10.1007/BF01200826

    Article  CAS  Google Scholar 

  26. Basak S, Nikolić S, Trinajstić N, Amić D, Bešlo D (2000) QSPR modeling: graph connectivity indices versus line graph connectivity indices. J Chem Inf Comput Sci 40:927–933. https://doi.org/10.1021/ci990119v

    Article  CAS  PubMed  Google Scholar 

  27. Trinajstić N, Nikolić S, Basak S, Lukovits I (2001) Distance indices and their hyper-counterparts: intercorrelation and use in the structure-property modeling. SAR QSAR Environ Res 12:31–54. https://doi.org/10.1080/10629360108035370

    Article  PubMed  Google Scholar 

  28. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  29. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20. https://doi.org/10.1021/ja01193a005

    Article  CAS  PubMed  Google Scholar 

  30. Balaban TA (1982) Highly discriminating distance based numerical descriptor. Chem Phys Lett 89:399–404. https://doi.org/10.1016/0009-2614(82)80009-2

    Article  CAS  Google Scholar 

  31. Randić M (1975) Characterization of molecular branching. J Am Chem Soc 97:6609–6615. https://doi.org/10.1021/ja00856a001

    Article  Google Scholar 

  32. NIST Chemistry Webbook. https://webbook.nist.gov/chemistry Accessed 5 Dec 2019

  33. PubChem. https://pubchem.ncbi.nlm.nih.gov Accessed 5 December 2019

  34. Wehrens R, Linden WE (1997) Bootstrapping principal component regression models. J Chemom 11:157–171. https://doi.org/10.1002/(SICI)1099-128X

    Article  CAS  Google Scholar 

  35. Wehrens R, Putter H, Buydens MCL (2000) The bootstrap: a tutorial. Chemom Intell Lab Syst 54:35–52. https://doi.org/10.1016/S0169-7439(00)00102-7

    Article  CAS  Google Scholar 

  36. Furtula B, Gutman I (2015) A forgotten topological index. J Math Chem 53:1184–1190. https://doi.org/10.1007/s10910-015-0480-z

    Article  CAS  Google Scholar 

  37. Leahy DE (1986) Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: Octanol-water partition coefficients and aqueous solubilities. J Pharm Sci 75:629–636. https://doi.org/10.1002/jps.2600750702

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science and Technological Development (Agreement No. 451-03-68/2020-14/200122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Furtula.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 641 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redžepović, I., Furtula, B. Predictive potential of eigenvalue-based topological molecular descriptors. J Comput Aided Mol Des 34, 975–982 (2020). https://doi.org/10.1007/s10822-020-00320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00320-2

Keywords

Navigation