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Abstract

G protein-coupled receptors (GPCR) comprise the largest family of membrane proteins and are of 

considerable interest as targets for drug development. However, many GPCR structures remain 

unsolved. To address the structural ambiguity of these receptors, computational tools such as 

homology modeling and loop modeling are often employed to generate predictive receptor 

structures. Here we combined both methods to benchmark a protocol incorporating homology 

modeling based on a locally selected template and extracellular loop modeling that additionally 

evaluates the presence of template ligands during these modeling steps. Ligands were also docked 

using three docking methods and two pose selection methods to elucidate an optimal ligand pose 

selection method. Results suggest that local template-based homology models followed by loop 

modeling produce more accurate and predictive receptor models than models produced without 

loop modeling, with decreases in average receptor and ligand RMSD of 0.54 Å and 2.91 Å, 

respectively. Ligand docking results showcased the ability of MOE induced fit docking to produce 

ligand poses with atom root-mean-square deviation (RMSD) values at least 0.20 Å lower (on 

average) than the other two methods benchmarked in this study. In addition, pose selection 

methods (software-based scoring, ligand complementation) selected lower RMSD poses with 

MOE induced fit docking than either of the other methods (averaging at least 1.57 Å lower), 

indicating that MOE induced fit docking is most suited for docking into GPCR homology models 

in our hands. In addition, target receptor models produced with a template ligand present 

throughout the modeling process most often produced target ligand poses with RMSD values ≤ 4.5 
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Å and Tanimoto coefficients > 0.6 after selection based on ligand complementation than target 

receptor models produced in the absence of template ligands. Overall, the findings produced by 

this study support the use of local template homology modeling in combination with de novo 

ECL2 modeling in the presence of a ligand from the template crystal structure to generate GPCR 

models intended to study ligand binding interactions.
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Comparative modeling; Comparative protein modeling; Homology modeling; Ligand 
identification; GPCR; Ligand Docking; Loop Modeling; G protein-coupled receptor

1. INTRODUCTION

G Protein Coupled Receptors (GPCR) are involved in a multitude of cellular signaling 

pathways. When GPCR signaling is dysregulated, diseases such as cancer, diabetes, and 

nervous system disorders can manifest. [1] About 34% of FDA-approved drugs target 

GPCR, reflecting their physiological roles in the regulation and development of disease. [2]

Structurally, GPCR consist of 7 transmembrane (TM) helical domains, 3 extracellular and 3 

intracellular loops that connect the membrane spanning domains, an extracellular amino 

terminus and an intracellular carboxy terminus. [3] The Ballesteros-Weinstein numbering 

scheme is often used to relate structurally similar sites among different GPCR sequences and 

classes. [4] In this scheme, the most conserved residue within a transmembrane helix is 

denoted as the TM.50 residue and other residues within the same domain are numbered 

relative to this position. For example, the most conserved residue within class A GPCR 

transmembrane helix 3 is an arginine, thus it is identified as R3.50. An alanine located 5 

amino acids prior to the reference arginine (i.e. nearer the amino terminus) would be A3.45.

Of the more than 800 GPCR encoded within the human genome [5], only 70 are represented 

in the Protein Data Bank [6] by experimentally determined, three-dimensional structures as 

of April 27, 2020. The lack of experimentally resolved structures for many GPCR has led to 

the use of computational modeling as a GPCR structure prediction tool. Despite this trend, 

GPCR modeling is not without challenges and critical decision points, including but not 

limited to, template structure selection and template-target alignment. Additional challenges 

in GPCR modeling include effectively sampling and selecting conformations for the 

extracellular loop (ECL) and intracellular loop (ICL) regions of the target receptor. 

Accurately modeling the second ECL region of GPCR models likely impacts applications 

aimed at investigating ligand binding, whereas the ICL region likely impacts applications 

targeting recognition of intracellular signaling partners and G protein selection and 

activation. Homology modeling, frequently used to model receptors with unresolved 

structure, is rooted in the theory that proteins with similar amino acid sequences and 

common function possess similar structures due to common evolutionary origins. [7] A 

receptor with high amino acid sequence identity (and similar function) is typically chosen as 

the template upon which a target receptor sequence is to be modeled. Amino acid identities 

higher than 30% in these applications are generally considered acceptable. [8] However, 

selecting a template based solely on global sequence identity may not emphasize GPCR 
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regions most relevant to the purpose for which the models are being generated. [9] For 

example, if the goal is to study GPCR interactions with G-proteins, prioritizing intracellular 

loop sequence homology would most likely produce better models than homology models 

generated using templates with high ligand binding pocket similarity. The opposite is true 

for ligand docking studies. Our recent study challenged the conventional use of global 

sequence identities for GPCR template selection. In that study CoINPocket scores developed 

by Ngo et al. [10] were utilized to select templates with which to build GPCR homology 

models. [9] The CoINPocket comparison bases its scoring on the importance and strength of 

individual ligand-residue interactions across a representative set of class A GPCR and was 

used to find closely related pharmacological receptor “neighbors” as a ligand identification 

strategy. [10] In the previous work, models using templates selected using CoINPocket 

similarities were compared to homology models constructed from templates selected using 

conventional global sequence identity metrics. The resulting homology models were 

evaluated in terms of their overall structural similarity and the similarity of docked poses to 

the reference crystal structures. [9] Homology modeling based on CoINPocket nearest 

neighbors resulted in models with greater docked ligand pose accuracy than models whose 

templates were selected based on global sequence similarity alone, although overall 

similarity of the protein models to the crystal structure did not differ substantially. [9]

Of the characteristic GPCR regions, extracellular loop 2 (ECL2) is often the longest and 

most variable in terms of both length and amino acid composition. [11] This length produces 

intrinsic flexibility. In addition, ECL2 often contributes to GPCR ligand binding and 

selectivity. [12] Site-directed mutagenesis within the ECL2 region can produce drastic 

changes in ligand binding activity (such as in the human histamine H4 receptor (H4R)), 

demonstrating the role ECL2 can play in recognizing and binding ligands. [13] A recent 

review published by Woolley et al. discussed the various structural impacts of ECL2 on 

ligand binding. [14] In certain GPCR such as rhodopsin, sphingosine-1-phosphate receptor 1 

(S1P1), and free fatty acid receptor 1 (FFAR1), the intrahelical space between 

transmembrane domains is open in absence of a bound ligand. However, upon ligand 

binding, ECL2 and the N-terminal domain form a “lid” that covers the binding site, forming 

a more stable ligand-receptor complex that results in slower ligand dissociation. In other 

GPCR such as peptide-binding receptors, the β-hairpin ECL2 structure remains open during 

a ligand binding event. [14] A disulfide bond between conserved cysteine residues 3.25 in 

transmembrane domain 3 (TM3) and 45.50 in ECL2 often contributes to receptor 

stabilization, and removal of this bond using site-directed mutagenesis has proven 

detrimental to GPCR ligand binding. [11] The structural variability of ECL2 is typically 

addressed by loop modeling, wherein loop conformations can be computationally sampled 

using de novo approaches to best describe loop structure in three dimensions. [15] In another 

of our previous benchmark studies, ECL2 was modeled in the context of crystallized 

receptor structures (using accurate loop anchor residues) as a method of testing the structural 

accuracy of loops generated with a variety of loop modeling methods. [16] This study 

identified the kinematic loop closure with fragments (KICF) algorithm within Rosetta [17] 

as most frequently sampling GPCR loop conformations within a 2.5 Å RMSD of the 

reference crystal structure. [16] While loop modeling within crystallized receptor structures 

is not generally needed unless the loop region has unresolved atomic coordinates, the results 
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of the benchmark in question suggest a preferred method for loop structure prediction within 

the context of a homology model.

The current benchmark study assessed a combination of previously benchmarked modeling 

choices with new variables on the accuracy of docking into GPCR homology models. The 

previously benchmarked local similarity-guided template selection and loop modeling 

protocols are assessed in combination with the presence or absence of the template ligand 

while modeling the target receptor, as well as three distinct methods of ligand docking. We 

speculated that inclusion of a ligand from the template receptor during the modeling process 

would produce better quality receptor models and docked ligand poses, as closely-related 

GPCR often share ligands and ligands within different GPCR often contact similar residues. 

[10] A set of 10 crystallized class A GPCR were subjected to this analysis (Scheme 1), with 

a subset of receptors being used to analyze various docking methods in addition to the 

protein modeling process. The 10 GPCR employed in this study were: angiotensin type II 

receptor (AT2R), chemokine receptor type 4 (CXCR4), free fatty acid receptor 1 (FFAR1), 

histamine receptor 1 (H1R), muscarinic receptor 1 (M1), muscarinic acetylcholine receptor 4 

(M4R), nociceptin opioid receptor (NOP), kappa opioid receptor (OPRK), P2Y purinoceptor 

12 (P2Y12), and protease-activated receptor 1 (PAR1). Performance of this GPCR modeling 

workflow was benchmarked using root mean square deviation (RMSD) of alpha carbon 

positions after superposition of each protein model on its respective reference crystal 

structure to assess protein model quality and two ligand pose quality metrics: 1) RMSD of 

ligand atomic positions after superposition of each docked complex on the crystallographic 

complex; and 2) Tanimoto coefficients representing the proportion of common ligand 

interaction sites in the modeled and crystallographic complexes.

The long-term goal of the current research is to optimize a modeling protocol to investigate 

GPCR complexes for any target GPCR sequence. Potential applications of this modeling 

protocol include prioritization of candidate ligands for experimental screening and 

generation of hypotheses regarding receptor sites involved in ligand binding to be tested by 

subsequent site-directed mutagenesis. Improved accuracy in candidate ligand prioritization 

will help accelerate receptor deorphanization [18] and help improve the identification of 

chemical tool compounds to probe receptor function or to serve as preclinical lead 

compounds in the drug discovery process. Overall, this work demonstrates that the 

integration of loop modeling with homology models constructed from locally selected 

template structures produces better receptor models (0.43 Å average RMSD decrease), as 

well as better docked ligand poses (2.91 Å average ligand RMSD decrease) than non-loop 

modeled local template homology models. In addition, this work exhibits that inclusion of a 

pharmacological neighbor receptor’s ligand throughout the receptor modeling process 

produces a greater proportion of high quality docked complexes than receptors modeled 

without a ligand present (30% of best docked poses exhibited RMSD ≤ 4.5Å when selected 

via ligand complementation).
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2. RESULTS AND DISCUSSION

2.1 Homology Model Template Selection

A summary of target and template GPCR, the local similarity measure (CoINPocket score), 

GenBank accession numbers, and PDB identification codes used in this study can be found 

in Table 1. Local templates used for the homology modeling of GPCR target proteins were 

selected from a pool of GPCR with available crystal structures using the CoINPocket local 

similarity measure. [6, 10] GPCR from the same subfamily as the target were excluded as 

templates, for example, C-C chemokine receptor type 5 (CCR5) was not selected as a 

template from which to model CXCR4. Four receptors were modeled using two different 

target-template pairings so models of the same receptor with differing template structures 

(and therefore different local similarity scores) could be compared.

According to the CoINPocket scores set forth by Ngo et al., any receptor compared to itself 

has a GPCR-CoINPocket score of 5.47. [10] This self-similarity establishes a maximal 

binding pocket similarity score for target sequence/template receptor pairs. It should be 

noted that a higher local similarity score does not always translate to a high global 

unweighted sequence similarity and vice versa. Local similarity scores used herein ranged 

from 1.23 (M4R/NOP) to 2.58 (M1/H1R), indicating that the binding site residues were not 

perfectly conserved between receptor pairings but still shared appreciable residue 

conservation. Unweighted global sequence identities ranged from 7% (FFAR1/P2Y12 and 

P2Y12/PAR1) to 36% (M1/H1R). Percent identities at the low end of this range would 

generally be considered unacceptable for the purpose of constructing homology models 

unless substantial further refinement (such as loop modeling) were included in the workflow.

2.2 Protein Model Development and Analysis

Homology models developed in this study were benchmarked against crystallographic 

reference structures. In order to place these comparisons in the appropriate context, RMSD 

values between different PDB entries for the same receptor were calculated (Table 2) to set a 

baseline for experimental variability. On average, the experimental alpha carbon variation 

among multiple structures of the same receptor was 1.75 Å, which sets a range of 

expectation for models generated using our methodology. Our expectation is that models 

that differ from the target crystal structure by no more than 2 times the average experimental 

variation, or 3.5 Å, should be considered high quality models.

Homology models were constructed in MOE using two different model selection settings, 

Generalized Born Solvation (GBVI) scoring [19] and contact energy [20]. The latter 

produced models with binding pockets that better matched ligand locations in GPCR 

crystallographic complexes in terms of location and volume based on the Alpha Shapes 

methodology discussed in the methods section. This is illustrated using the M1 receptor in 

Figure 1 (ligand structure 3 shown in Figure 2).

Two approaches were used to generate homology models to be used as the starting points for 

loop modeling and in ligand docking experiments. Both approaches produced eleven 

homology models for each target:template GPCR pairing modeled using the default 

modeling options in MOE, with the exception of selecting effective atomic contact energy as 
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the scoring method. Approach A included no ligand in the binding pocket of the template 

receptor and was applied to all pairings in Table 1. Approach B was applied only to the 

target:template pairing with the higher CoINPocket score for each target receptor and 

retained the crystallographic ligand from the template receptor and utilized this ligand as an 

‘Environment for Induced Fit’. [21]

Software packages and algorithms for ECL2 loop modeling in the context of GPCR crystal 

structures have been previously benchmarked, with the best performance achieved by 

Rosetta’s kinematic closure with fragments (KICF) algorithm. [16] In the current study, 

KICF was used to sample ECL2 conformations in the context of homology models 

generated by approaches A and B with no ligand present in the binding pocket, herein 

referred to as loop modeling approaches A1 and B1, respectively. Additionally, KICF was 

used to sample ECL2 conformations in the context of homology models generated by 

approach B with ligand present during the loop modeling process (overall process of protein 

model generation with ligand present through both modeling steps considered approach B2).

For each set of loop modeling results, the ten lowest-scored models with intersulfur (Cys 

3.25-Cys 45.50) distances ≤ 5.1 Å were selected for further examination. Each of the ten 

loop modeled structures and the local template homology model was superposed on the 

reference crystal structure using non-loop residues, followed by calculation of alpha-carbon 

receptor RMSD values for the entire structure (Figures 3 and 4 and Supplementary Tables 

S1 and S2) and ECL2 region (Supplementary Tables S3 and S4). A representative 

superposition of a local template homology model on the reference crystal structure is 

shown in Figure 5. Superpositions of loop modeled structures on reference crystal structures 

are shown in Figure 6. Note that RMSD values for local template homology models are 

different from the values discussed in the prior benchmark [9], as the homology models 

discussed therein were chosen based on GBVI scoring rather than effective atomic contact 

energies. Alpha carbon RMSD values for models generated using approach A1 based on the 

highest-similarity templates ranged from 2.76 (M4R) to 6.32 Å (FFAR1) with an average of 

4.34 Å (Table S1 and Figure 3A). Initial homology models for three target:template pairings 

achieved our high quality metric of 3.5 Å, H1R (3.15 Å), M1 (2.93 Å), and M4R (2.76 Å). 

While these receptor RMSD values are not sub-angstrom (<1.0 Å) or near-atomic (<2.5 Å), 

comparison of the generated RMSD values to structural variation within crystallographic 

structures for each receptor allows for a better examination of model quality (Table 2). For 

example, the best scoring initial homology model for P2Y12 had an alpha carbon RMSD of 

4.07 Å, which falls within 2.32 Å of the average variation present in crystallized structures 

and within 1.4 Å of the observed 2.67 Å variation between the most diverse pair of P2Y12 

PDB entries, indicating that models being generated with the methodology discussed thus 

far are adequate representations of the receptors being modeled. Loop modeling led to 

substantial improvements in model quality in two cases, FFAR1 and OPRK. In these cases, a 

loop-modeled structure was 2.27 Å and 1.24 Å lower in RMSD relative to the 

crystallographic reference structure. There were no cases in which loop modeling resulted in 

a substantial (>0.25 Å) loss of protein model quality.

Four receptors were modeled using two different templates (AT2R, H1R, M4R, P2Y12, 

Table 1). Initial homology model alpha carbon RMSD values were lower for 3 of 4 receptors 
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(H1R, M4R, P2Y12) when modeled with a more similar template (Figure 4, Table S2), 

indicating that the use of a template with a higher local similarity score leads to better 

homology models. The largest difference in initial homology model quality due to template 

choice was for the P2Y12 receptor, for which the distribution of alpha carbon RMSD values 

for loop optimized models based on the low and high similarity templates are significantly 

different based on the Kolmogorov-Smirnov test at 95% confidence. The lower similarity 

template, FFAR1 (PDB entry 5TZR) has an unusual ligand binding mode that involves 

ligand insertion between TM segments 3 and 4, with a resulting offset of TM3 relative to 

other known GPCR structures (Figure 7). Thus, the dramatic difference in P2Y12 model 

quality reflected in the over 4 Å RMSD difference is likely less a consequence of similarity 

differences than in the truly unusual structure features of the FFAR1 crystal structure relative 

to all other currently known GPCR structures. Loop modeling provided substantial 

improvements in three of four receptors modeled based on lower similarity templates (H1R, 

M4R, P2Y12) without detrimental impact in other cases, indicating the value of loop 

modeling for its potential to produce improved receptor models. This is further supported by 

the observation that distributions of loop optimized model RMSD values between low and 

high similarity templates are not significantly different for H1R or M4R based on the 

Kolmogorov-Smirnov test at 95% confidence. This suggests that loop modeling can 

compensate in some cases for differences in initial model quality.

The effect of including the template ligand only during homology modeling (approach B1) 

or during both homology modeling and loop modeling (approach B2) was also assessed 

(Figure 3 and Table S1). Initial homology models generated using the ‘Environment for 

Induced Fit’ option via approach B1 possessed similar average receptor RMSD values to 

models created by approach A1 (4.24 Å vs. 4.34 Å, respectively), indicating that inclusion 

of a binding pocket ligand during the homology modeling process did not substantially 

impact protein model quality. Loop modeling produced improved models in a similar 

number of cases by all approaches.

2.4 Ligand Docking and Analysis

Three docking methods were compared in this study: MOE induced fit, MOE rigid receptor, 

and Rosetta docking. These methods were first assessed for their performance in redocking 

ligands (Figure 2) into six reference crystal structures. In order to compare the docked ligand 

poses generated by each method to the crystallographic ligand positions, ligand RMSD 

(LRMSD) values were calculated using MOE. Though LRMSD values are an output of 

Rosetta’s ligand docking process, LRMSD values reported here were calculated in MOE to 

ensure that a consistent superposition process was used prior to LRMSD calculation. Rosetta 

performed worst of the three methods when docking into crystallized receptor structures. No 

poses produced possessed LRMSD values under 3 Å (Table S5), in contrast to poses with 

LRMSD under 2 and 3 Å in 5 of 6 cases produced by the MOE rigid and induced fit 

docking, respectively, in a previous benchmark. [9]

These docking algorithms were further assessed by docking ligands (Figure 2) into models 

from approach A1. Examples of poses produced by each docking method can be found in 

Figure 8. The ability of each method to sample docked poses similar to the crystal structure 
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was assessed using the pose with the lowest LRMSD value resulting from each method 

(Figure 9). In addition, LRMSD averages without FFAR1 were calculated as all ligand poses 

for this receptor had LRMSD above 7 Å (Table S5), which can most likely be attributed to 

the unusual ligand binding mode in the crystallized reference structure (Figure 7). The 

distribution of LRMSD values was not significantly different at the 95% confidence level 

between methods based on a Kolmogorov-Smirnov test. However, guidance on docking 

protocol selection can still be drawn on the basis of the proportion of results meeting a 

performance target. In this case, a docking performance target LRMSD of 4.5 Å was set as a 

reasonable increase of 1.5 Å higher than the majority of re-docking results for MOE induced 

fit. The best ligand poses sampled with MOE induced fit docking met our performance 

target in 5 of 6 cases while both MOE rigid and Rosetta docking sampled best poses ≤ 4.5 Å 

in only 2 of 6 and 4 of 6 cases, respectively, (Figure 9, Plot A), indicating that MOE Induced 

Fit docking sampled quality poses most often. This holds true when considering average 

LRMSD values without FFAR1 as well: the average MOE induced fit best pose LRMSD 

averaged 3.73 Å, lower than both MOE rigid (4.64 Å) and Rosetta (4.29 Å) docking (Table 

S5). The best poses produced by MOE rigid receptor docking typically had the highest 

LRMSD values (all receptors except NOP, Figure 9), illustrating the importance of flexible 

residue side chains in sampling ligand poses representative of the crystallographic ligand 

pose. This can likely be attributed to the differences between the homology modeled 

structures and the crystallographic reference structures, as MOE rigid docking performed 

well at re-docking ligands into crystal structures in a previous benchmark study. [9]

When a crystallographic reference is not available, ligand poses must be selected based on 

available information from the docked pose alone, rather than determination of LRMSD 

using a reference structure. Ligand poses are typically selected in such cases based on pose 

scores. In order to measure scoring performance of the docking methods, the lowest 

LRMSD among the top 10 scoring ligand poses using either the scoring function associated 

with the method (T10) or a complementation scoring method (T10 Comp) for each receptor 

was determined (Figure 9 panels B and C, Table S5). Excluding the comparison of MOE 

induced fit and MOE rigid T10 Comp LRMSD values (p = 0.03), the distribution of LRMSD 

values across the six receptors was not significantly different at the 95% confidence level 

between pose selection methods based on a Kolmogorov-Smirnov test. However, guidance 

on pose selection method can still be drawn based on differences in average results. Average 

T10 Comp values for MOE induced fit, MOE rigid, and Rosetta docking across the subset of 

six receptors were 5.58, 8.02, and 6.47 Å, respectively. Average T10 values for the same 

methods were 5.90, 8.13, and 7.47 Å, respectively. The T10 Comp values were lower by 

0.32, 0.11, and 1.00 Å, respectively. These data support two conclusions: 1) that pose 

selection using complementation scoring provided a slight decrease in LRMSD regardless of 

the docking method used to generate the poses, although the differences were not significant 

based on the Mann Whitney U test and 2) selected poses from MOE induced fit docking had 

lower LRMSD than those selected from the other docking methods (significant difference at 

the 95% confidence level achieved only for the induced fit versus rigid comparison based on 

the Mann Whitney U test).

Comparisons of docked poses for receptors shared between the current and previous 

benchmark studies [9] demonstrate the value of including loop modeling in the protein 
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modeling protocol. Induced fit poses (derived from approach B2) selected by 

complementation score in the current study (Table S6) had an average LRMSD of 6.13 Å 

and an average Tanimoto coefficient of 0.51 in contrast to the prior study with an average 

LRMSD of 10.44 Å and an average Tanimoto coefficient of 0.31. Thus docking results are 

improved by sampling ECL2 loop conformations after homology modeling.

Ligands were docked into four sets of receptor models generated using modeling approach 

A1 based on two different templates (Figure 10 and Table S7). In three out of four cases, a 

lower LRMSD value and higher Tanimoto coefficient was obtained for the best pose 

sampled when docking into the models based on higher similarity templates. In every case 

pose selection based on complementation score (as evidenced by T10 Comp LRMSD 

values) selected lower RMSD poses (three of the four also with higher Tanimoto 

coefficients) from docking into models based on the higher similarity template. Though 

Tanimoto coefficients were not found to be significantly different at the 95% confidence 

level based on the Kolmogorov-Smirnov test, distributions of selected pose RMSD values 

between the high and low similarity templates were significantly different at the 95% 

confidence level (p = 0.03).

MOE induced fit docking was used to dock ligands into models based on the highest 

CoINPocket scored templates generated using modeling approaches A1, B1 and B2 (Figures 

11 and 12, Table S6). These results were assessed using two metrics, LRMSD (Figure 11) 

and Tanimoto coefficients (Figure 12). The distributions of selected pose RMSD value or 

Tanimoto coefficients between the methods were not significantly different at the 95% 

confidence level based on the Kolmogorov-Smirnov test. However, comparison of results 

guided by a target LRMSD threshold of 4.5 Å or lower for high-quality poses, coupled with 

a Tanimoto coefficient of 0.6 or greater (at least 60% of ligand contact residues shared) does 

provide some guidance for protocol selection. Based on these targets, approach B2 coupled 

with complementation scoring for pose selection can be clearly identified as the best 

protocol for obtaining high quality ligand poses when using homology models in docking 

studies. In particular, docking into five of the targets sampled a pose that met both of these 

thresholds, and the complementation scoring included a pose that met both thresholds in 

three of the five cases. Approaches A1 and B1 yielded zero cases in which both thresholds 

were met after pose selection. Overall, homology modeling and loop modeling with a 

template protein ligand present produces target protein ligand poses that meet performance 

goals for a greater proportion of docking targets than in the absence of the template protein 

ligand. Thus, we recommend the use of receptor modeling approach B2, wherein a template 

ligand is present throughout both homology modeling and loop modeling of the target 

receptor.

3. CONCLUSIONS

The overall goal of the work described here was to assess a combination of previously 

benchmarked modeling choices with new variables on the accuracy of docking into GPCR 

homology models. The previously benchmarked local similarity-guided template selection 

and loop modeling protocols are assessed in combination with the presence or absence of the 
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template ligand while modeling the target receptor as well as three distinct methods of 

ligand docking.

Loop modeling led to substantial improvements (>1 Å decreases in alpha carbon RMSD 

compared to the crystallographic reference structure) in protein model quality in two cases 

by all three protein modeling approaches, FFAR1 and OPRK (Figure 3, Table S1). There 

was only one case in which loop modeling caused a substantial reduction in protein model 

quality (PAR1 modeled with a P2Y12 ligand as environment for induced fit). Loop modeling 

also provided substantial improvements in three of four receptors modeled based on lower 

similarity templates without detrimental impact in other cases (Figure 4), indicating the 

value of loop modeling for its potential to produce improved receptor models. The refined 

ECL2 regions of each receptor also played a role in producing more accurate ligand poses, 

as evident by the average 2.59 Å decrease in LRMSD (from 7.67 Å to 4.76 Å) and 0.11 

increase (from 0.45 to 0.56) in Tanimoto coeffients between contact residues compared to 

ligand poses docked into initial homology models (Table S6).

When docking native ligands into homology models generated using the protocols discussed 

herein, ligand poses with LRMSD values within 4.5 Å of the crystallized reference structure 

ligand pose were most often sampled using MOE induced fit docking (Figure 9). When 

looking at methods of pose selection (pose scoring and ligand complementation) across all 3 

docking methods (Figure 9), MOE induced fit docking poses selected via T10 or T10 Comp 

scoring were far better than MOE rigid receptor or Rosetta docking. NOP docking results 

illustrate this point, as the best ligand pose selected via complementation scoring from the 

MOE induced fit docking was 3.45 Å and 5.84 Å lower than from Rosetta and MOE rigid 

receptor docking, respectively (Supplementary Table S5). Though the need to further 

validate docked ligand models via methods such as site-directed mutagenesis is clear, these 

results remain promising in terms of producing ligand poses resembling those of crystallized 

ligands.

While MOE induced fit docking often produces the best ligand poses, nuances in the other 

two docking methods must be considered. The Site Finder function within MOE was used to 

provide user-identified docking sites for MOE induced fit and rigid receptor docking. 

Rosetta docking requires a user-defined XYZ coordinate binding pocket centroid, which was 

defined in this work as the centroid of the site identified by the MOE Site Finder function. 

Rosetta also uses ‘movers’, which change the conformation of the ligand-receptor complex 

during the docking process. [22] Arguments for these movers include parameters such as 

‘box_size’, a maximum translation of a ligand from its starting point, and scoring grid width, 

which defines the cubical space around which the ligand will be scored. [23] Since all 

methods utilize user-defined parameters to guide the process, docking results can vary 

depending on the values used for these parameters. Efforts were undertaken to match 

parameters between methods as much as possible in order to provide a fair comparison.

Though homology modeling receptors using the ‘Environment for Induced Fit’ option in 

MOE produced protein models of relatively similar quality as those produced using the 

default homology modeling protocol in MOE (4.24 Å vs 4.34 Å, respectively), 

complementation score pose selection on docking results from receptors modeled with a 
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template ligand present throughout both homology and loop modeling is the method that 

most often selected high quality poses for any target (LRMSD ≤ 4.5 Å and Tanimoto 

coefficient ≥ 0.6) (Figures 11 and 12, Table S6), suggesting the use of receptor modeling 

approach B2 in future efforts.

These results provide further evidence that GPCR homology model construction from 

templates selected on the basis of similarity scores weighted toward sites involved in strong 

ligand binding interactions (CoINPocket scores) improves docking pose accuracy (Figure 

10). Among 4 receptors modeled using templates of differing local similarity (average 

similarity score 1.58 versus 2.26), average LRMSD after pose selection by complementation 

was below 6 Å for the models constructed based on higher similarity templates, but over 8 Å 

for the models constructed based on lower similarity templates (Supplementary Table S7).

A suggested workflow to generate GPCR models to be used to study ligand interactions can 

be extracted based on these comparative performance results. First, homology models should 

be constructed based on templates with the highest local similarity scores and with template 

ligand included as the ‘Environment for Induced Fit’ in MOE. ECL2 conformations should 

be sampled with the template ligand present using the KICF algorithm in Rosetta 

constraining formation of the C3.25-C45.50 disulfide bond. Ligand docking into the top 10 

scored resulting models using induced fit docking in MOE followed by pose selection via 

ligand complementation will serve to select high quality poses from the set of sampled 

poses.

4. METHODS

4.1 Target/Template Selection and Preparation

Template sequences for homology modeling of targeted, previously crystallized receptors 

used in this study (Table 1) were selected using the contact-informed neighboring pocket 

(CoINPocket) scores developed by Ngo et al. to emphasize similarities at sites that make 

important and strong ligand interactions in a set of 27 unique class A GPCR crystal 

structures. [10] In addition to calculating CoINPocket scores, Ngo et al. calculated 

unweighted global similarity values for each possible sequence pairing. Global similarity 

values for the receptors used in this benchmark can be found in Table 1. For the initial subset 

of receptors, a template for each target GPCR was selected that exhibited the highest 

CoINPocket local similarity score and possessed a previously solved and deposited crystal 

structure. Each template selected was not 1) the target GPCR or 2) a closely related GPCR 

that binds the same endogenous ligand. The CoINPocket score-based models were termed 

“local template” models. A subset of four target receptors were additionally modeled on the 

basis of a lower similarity template for comparison.

4.2 Homology Model Construction and Analysis

Homology modeling began with the deletion of non-GPCR sequence segments from 

template and crystallographic reference structures including fusion partners such as T4 

lysozyme or thermostabilized cytochrome b562RIL from the selected template, as these are 

non-native segments used to stabilize a single receptor conformation for crystallization. [24] 
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Each target sequence was aligned to the selected template sequence using a two-step 

procedure in MOE 2018.01. [21] First, the sequences were aligned using MOE’s “sequence 

only” method of automatic alignment. After the initial alignment, any gaps in helical 

segments were manually shifted into the structurally variable intracellular and extracellular 

loop regions while ensuring that conserved TM.50 residues remained aligned. [9] This 

structure-independent alignment was performed to account for the variability in sequence 

length and composition of loop regions and to avoid distortions within the more structurally 

conserved helical transmembrane domains. Homology models were then generated using 

two approaches. Models created using approach A utilized the default settings in the MOE 

homology modeling interface, with the exception of scoring models based on effective 

atomic contact energy. The second approach (approach B) utilized the same settings for 

homology model generation as approach A, with the addition of retaining the 

crystallographic ligand from the template structure as the ‘Environment for Induced Fit’. 

Approach B was applied only to the target:template pairing with the higher CoINPocket 

score for each target receptor. The resulting homology models were then superposed onto 

the crystallized reference structure based on non-loop residues prior to calculation of 

receptor alpha-carbon RMSD values, both for the entire sequence and for loop segments, as 

metrics of structural similarity.

4.3 De Novo Extracellular Loop 2 (ECL2) Modeling

Prior to ECL2 modeling, loop ‘anchor’ residues were selected. For each receptor, the final 

helical residue of TM4 and first helical residue of TM5 of the lowest contact energy local 

template homology model were used as anchor points (Table 3), with loop modeling then 

sampling conformations of all residues between the anchor points. Fragment libraries 

required by the KICF algorithm [17, 25] were then generated using the Robetta server. [26] 

To generate these fragments, a FASTA formatted sequence containing the nine residues prior 

to the first loop anchor, the ECL2 sequence and the nine residues after the second loop 

anchor was submitted to the server. An atomic disulfide constraint that restricts the distance 

of sulfur atoms in critical cysteine residues 3.25 of TM3 and 45.50 of ECL2 to 5.1 Å 

(representative of the known disulfide bond in many GPCR structures) was incorporated into 

the loop modeling protocol. [27] This constraint is meant to emulate the filtering of models 

with unrealistic disulfide distances done in the previous benchmark, as filtering ECL2 

models based on disulfide distance ≤5.1 Å often produced models with better loop RMSD 

values. [16] When the constraint was applied to the Rosetta loop modeling protocol, far 

fewer models exhibiting disulfide distances uncharacteristic of GPCR resulted. Examples of 

models with unrealistic disulfide distance include models with steric clashes due to sub-

angstrom disulfide distances or models with extremely large inter-sulfur distances. This 

atomic constraint also reduces the loop model conformational space. ECL2 models were 

produced using three different approaches, each utilizing a different combination of 

homology and loop modeling methods:

A1. Homology and loop modeling without a template ligand present.

B1. Homology models created using template ligand as ‘Environment for Induced 

Fit’, loop modeled without template ligand present in the binding pocket.
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B2. Homology models created using template ligand as ‘Environment for Induced 

Fit’, loop modeled with template ligand present in the binding pocket.

Each approach generated a total of 250 disulfide-constrained ECL2 models for each of the 

target:template pairings in this benchmark. Greater loop sampling was achieved for loops 

meeting the 5.1 Å threshold than in the previous benchmark [16] because all 250 of the 

constructed loops met the disulfide distance filter. This number was ten-fold higher than the 

number of models typically meeting the 5.1 Å disulfide distance filter out of the 1000 

generated models for each target in the prior benchmark study. [16] The ECL2-TM3 

disulfide bond was formed in the top 10 lowest scoring models followed by geometry 

optimization of the ECL2 segment in MOE. The resulting local template derived and ECL2 

optimized models were used for subsequent ligand docking. Receptor alpha-carbon RMSD 

values were calculated for ECL2 optimized models as described in the prior section.

4.4 Ligand Docking

Ligand docking was initally performed with a subset of 6 targets generated via modeling 

approach A1 using both the MOE and Rosetta software packages. Three distinct methods 

were examined in this study: MOE induced fit docking, MOE rigid receptor docking, and 

RosettaScripts ligand docking (herein referred to as Rosetta docking). MOE induced fit 

docking places the active ligand into a user-defined binding site inside a target receptor 

whose residue side chains are allowed to move freely during the refinement stage. MOE 

rigid receptor docking places the active ligand into a user-defined binding site inside a target 

receptor whose side chains are held static during both the placement and refinement stage. 

The docking methods employed by MOE continuously sample ligand conformations as the 

docking proceeds, allowing for a best fit of the ligand within a potential binding pocket. In 

contrast, Rosetta docking differs from MOE in that ligand conformations are generated prior 

to the docking process, rather than actively sampling ligand conformations within the 

binding pocket during the docking analysis. Ligand conformations and a user-defined 

binding pocket of a target receptor with flexible residue side chains are required inputs for 

Rosetta docking. [23] Conformations for each ligand docked using Rosetta were generated 

using MOE’s Conformational Search tool, which outputs a database of energetically 

reasonable ligand conformations. In addition to homology models, reference crystal 

structures were used as docking targets for Rosetta in order to compare docking performance 

to the previous benchmark. [9] The remainder of ligand docking was performed using only 

MOE induced fit docking based on the results of the docking method comparisons.

Each local template model and the top ten sampled ECL2 optimized models were utilized as 

docking targets. Each protein and ligand structure was prepared at pH 7.4 using the 

“QuickPrep” function in MOE to 1) ensure proper protonation and charge at the desired pH 

and 2) minimize the structure using the AMBER10:EHT forcefield. [28] Once each receptor 

model was prepared, the Site Finder function in MOE was used to define a binding pocket 

within the receptor model. This function organizes potential binding sites by the volume of 

alpha spheres within a potential binding pocket, based on the Alpha Shapes methodology of 

Edelsbrunner et al. [29] Both forms of MOE ligand docking used in this study utilized the 

MOE Site Finder function to define the docking site, though it is not the sole method of 

binding pocket selection available within MOE. Rosetta, on the other hand, uses XYZ 
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coordinates to define a theoretical binding site within a receptor that restricts ligand 

movement within that defined site. The XYZ coordinates of the center of the binding site 

defined as the docking site for MOE docking were used to define the binding site during 

Rosetta docking.

Ligands docked into each receptor can be found in Figure 2. Both MOE induced fit and rigid 

receptor docking protocols generated 1000 initial ligand placement poses for each of the top 

ten lowest scoring receptor models, from which the top 400 poses based on the London dG 

scoring function were passed on to the refinement stage. [21]. Refinement used the 

Generalized-Born Volume Integral/Weighted Surface area (GBVI/WSA) scoring function. 

[19] For each of the 10 receptor models with different ECL2 conformations, the top 5 

refined ligand poses were retained as final complexes after the refinement stage to provide 

50 poses overall for each target modeled. In order for the Rosetta ligand docking to 

adequately match the sampling of MOE docking, 1,000 ligand poses were generated for 

each of the top ten scoring models. All 1,000 poses were retained for each run as Rosetta 

docking does not remove poses through the workflow.

Once docked, an alpha carbon superposition of each receptor-ligand complex onto a 

crystallized reference structure was constructed and a heavy atom ligand RMSD (LRMSD) 

was calculated between the two ligand poses. Tanimoto coefficients were calculated to 

compare first neighbor residues to the ligand in the residue interaction network calculated 

using the RING 2.0 server between docked poses and crystallographic reference structures. 

[30] Two sets of poses were selected using different criteria. The first pose set included the 

ten lowest scoring models based on the scoring function for each respective docking method. 

The second pose set included the ten poses with the top ten ligand complementation scores, 

which reflect the ratio of hydrogen bonds made by the ligand when docked into a receptor to 

the number of ligand hydrogen bonding sites. This ligand complementation score reflects the 

proportion of polar functional groups that are involved in hydrogen bonding interactions. 

Polar functional groups within a ligand are able to participate in a maximal number of 

hydrogen bonds while free in solution. Docked ligand poses with polar functional groups not 

involved in hydrogen bonds are less energetically favorable in a bound environment than in 

water for both entropic and enthalpic reasons, which this score attempts to capture.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AT2R angiotensin II type 2 receptor

CCR5 C-C chemokine receptor type 5

CXCR4 C-X-C chemokine receptor 4

DP2 Prostaglandin D2 receptor 2

ECL extracellular loop

FFAR1 free fatty acid receptor 1

GPCR G protein-couple receptors

H1R histamine receptor H1

ICL intracellular loop

KICF kinematic closure with fragments

LRMSD ligand RMSD

M1 muscarinic acetylcholine receptor 1

M4R muscarinic acetylcholine receptor 4

MOE Molecular Operating Environment

NOP nociceptin opioid receptor

OPRK κ-opioid receptor

P2Y12 P2Y purinoceptor 12

PAR1 protease-activated receptor 1

RMSD root-mean squared deviation

TM transmembrane
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Fig. 1. 
Comparison of binding sites (spheres) identified in M1 homology models constructed from 

PDB 3RZE selected using A) Contact energy (cyan ribbon) and B) GBVI score (magenta 

ribbon) using the MOE site finder application with each respective structure superposed onto 

the crystal structure (PDB 5CXV orange) with ligand (0HK) visible (green). C) Crystal 

structure (PDB 5CXV orange) with ligand 3 (0HK green, see Figure 2 for structure).
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Fig. 2. 
Names and structures of ligands docked into protein models. The first line of text represents 

an abbreviated description of the ligand, name of the receptor, and PDB entry code in the 

PDB. The subsequent lines provide the IUPAC name of the ligand.
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Fig. 3. 
Alpha carbon receptor RMSD values for the homology models generated with and without 

loop modeling for three different modeling approaches: (A) Approach A1, (B) Approach B1, 

(C) Approach B2. The dashed line appearing in each plot represents our receptor model 

quality metric of 3.5 Å.
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Fig. 4. 
Alpha carbon receptor RMSD values relative to crystallographic reference structures for 

receptor models generated by approach A1 with and without loop modeling for receptors 

modeled using two templates of varying local similarity score.
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Fig. 5. 
Lowest RMSD P2Y12 homology model constructed from PDB 3VW7 superposed on 

reference crystallographic structure (PDB 4PY0). A) View from within membrane plane of 

P2Y12 local template homology model (magenta) and lowest RMSD loop modeled local 

template homology model (cyan) superposed over the crystallized reference structure 

(orange). B) Extracellular view of the same superposition. C) Ribbons for TM4-ECL2-TM5 

segments only shown from same viewpoint used in panel A.
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Fig. 6. 
The lowest RMSD model of the top 10 scoring ECL2 models (cyan) and local template 

homology model (salmon) was superposed onto the crystallized reference structure (green). 

Loop RMSD values can be found in Tables 5 and 6. (A) CXCR4 based on PDB 5UNH, (B) 

FFAR1 based on PDB 4PY0, (C) M1 based on PDB 3RZE, (D) NOP based on PDB 5DSG, 

(E) OPRK based on PDB 3RZE, (F) P2Y12 based on PDB 3VW7
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Fig. 7. 
All atom superposition of crystal structures used in this study with segments of TM3 and 

TM4 highlighted (green: FFAR1, red: all other receptors) to showcase the unusual binding 

mode of FFAR1. The bound conformation of ligand MK6 within FFAR1 is highlighted in 

green as well
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Fig. 8. 
An example of CXCR4 ligand 1 docked using three different methods with the lowest 

LRMSD pose shown. Ligand superpositions of poses docked into CXCR4 models based on 

PDB 5UNH (magenta) and crystallographic reference (PDB 3OE6, green) are shown for 

three docking methods: MOE induced fit (panel A), MOE rigid receptor (panel B), and 

Rosetta (panel C)
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Fig. 9. 
Ligand RMSD (LRMSD) values calculated in comparison to the crystallized reference 

structure for three different docking methods employed in the context of approach A1 

models. The dashed line appearing in each plot represents our docking performance target of 

4.5 Å. (A) Lowest RMSD value found within the retained ligand poses for each method. All 

methods sampled 10,000 ligand poses per receptor (1000 per model). Both MOE Induced Fit 

and MOE Rigid retained 50 ligand poses per receptor (5 per model) and Rosetta retained all 

ligand poses. (B) Lowest LRMSD value within the top 10 scoring ligand poses. (C) Lowest 

LRMSD value within the top 10 poses based on adjusted percent complementation score.
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Fig. 10. 
Comparison of MOE induced fit docking poses and crystallographic ligand poses for 

receptors modeled using two templates when docked into approach A1 receptor models. (A) 

Lowest LRMSD docked pose obtained from docking into the top 10 scoring loop refined 

homology models (black) and best T10 comp LRMSD (grey) for each receptor. (B) 

Calculated Tanimoto coefficients corresponding to the aforementioned docked poses.
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Fig. 11. 
Ligand RMSD values for ligand poses docked into receptor models generated using three 

different receptor modeling approaches. The dashed line appearing in each plot represents 

our pose quality metric of 4.5 Å. Ligands docked into each receptor are represented below 

each receptor name and follow the numbering scheme found in Figure 2. (A) Approach A1, 

(B) Approach B1, (C) Approach B2.
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Fig. 12. 
Tanimoto coefficients for ligand poses docked into receptor models generated using three 

different receptor modeling approaches. The dashed line appearing in each plot represents 

our Tanimoto coefficient target of 0.6. Ligands docked into each receptor are represented 

below each receptor name and follow the numbering scheme found in Figure 2. (A) 

Approach A1, (B) Approach B1, (C) Approach B2
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Scheme 1. 
Homology modeling/loop modeling protocol.
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Table 1.

GenBank accession numbers and PDB ID numbers for GPCR used in this study.

Receptor Local Template

Local Similarity 

Measure
a Unweighted Global 

Similarity (%)
GenBank Accession 
Number Target PDB ID Template PDB ID

AT2R CXCR4 1.72 31.43 P50052.1 5UNH [31] 3OE6

AT2R DP2 2.21 33.99 P50052.1 5UNH 6D26 [32]

CXCR4 AT2R 1.72 31.43 CAA12166.1 3OE6 [33] 5UNH

FFAR1 P2Y12 1.42 7.09 AAI20945.1 5TZR [34] 4PY0

H1R OPRK 1.93 20.31 P35367.1 3RZE [35] 4DJH

H1R M1 2.58 35.98 P35367.1 3RZE 5CXV [36]

M1 H1R 2.58 35.98 CAA68560.1 5CXV 3RZE

M4R NOP 1.23 14.41 P08173.2 5DSG [36] 4EA3

M4R H1R 2.46 34.37 P08173.2 5DSG 3RZE

NOP M4R 1.23 14.41 NP_872588.1 4EA3 [37] 5DSG

OPRK H1R 1.93 20.31 AAC50158.1 4DJH [38] 3RZE

PAR1 P2Y12 1.78 16.26 N/A 3VW7 [39] 4PY0

P2Y12 FFAR1 1.42 16.26 Q9H244.1 4PY0 [40] 5TZR

P2Y12 PAR1 1.78 7.09 Q9H244.1 4PY0 3VW7

a
Compared to the maximal self-similarity measure of 5.47. A pairing of two receptors with a local similarity score of 5 would indicate a near 100% 

ligand binding pocket similarity, while a receptor pairing with a local similarity score of 1 or less would indicate low ligand binding pocket 
similarity.
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Table 2.

Variation among experimental structures for each receptor used as a template and/or target in this study.

Receptor Entries in PDB Variation (Å)
a

AT2R 5UNH, 5UNG, 5UNF, 6DO1, 5XJM 1.78

CXCR4 3ODU, 3OE0, 3OE6, 3OE9, 4RWS l.35

DP2 6D26, 6D27 0.49

FFAR1 4PHU, 5TZR, 5TZY 1.34

H1R 3RZE N/A

M1 5CXV, 6OIJ 2.35

M4R 5DSG N/A

NOP 4EA3, 5DHG, 5DHH 0.70

OPRK 4DJH, 6B73 3.29

P2Y12 4NTJ, 4PXZ, 4PY0 2.67

PAR1 3VW7 N/A

Average 1.75

a
Highest alpha carbon RMSD between any two structures for each receptor. RMSD was calculated using an alpha carbon superposition between 

residues present within all PDB entries for each receptor. Receptors with a value of “N/A” had only one crystal structure available at the time of 
this research.
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Table 3.

ECL2 loop start/end residues for each receptor’s crystal structure and lowest RMSD homology model.

Crystal Structure Homology Model

Receptor Local 
Template

ECL2 Start 
Residue

ECL2 End 
Residue

Anchor 
Residue 1

Anchor 
Residue 2

Length 

Difference
a

Avg. Anchor 
Residue 

RMSD (Å)
b

AT2R CXCR4 F181 P201 F181 Q206 +5 1.69

AT2R DP2 F181 P201 F181 E202 −1 3.89

CXCR4 AT2R F174 L194 F174 D193 −1 2.86

FFAR1 P2Y12 E145 P176 F142 P176 +3 6.65

H1R OPRK L163 T188 L163 V187 −1 3.15

M1 H1R V168 P186 W164 I187 +12 2.97

M4R NOP V175 P193 F170 N192 +4 2.24

M4R H1R V175 P193 I168 P193 +7 2.42

NOP M4R M188 Q208 Q192 V214 +2 9.67

OPRK H1R L196 Y219 L192 D223 −3 2.74

P2Y12 FFAR1 I161 E181 T163 I193 +10 5.70

P2Y12 PAR1 I161 E181 M160 V185 +5 4.72

PAR1 PAR1 L238 G265 K240 E264 −3 5.02

Structures of both the crystal structure and lowest alpha carbon RMSD homology model for each were aligned and superposed in MOE, then 
renumbered from 1 starting at the beginning of TM1.

a
Difference in sequence length between segment bookended by anchor points of the homology model and ECL2 of crystal structure. For example, 

the segment loop modeled for the CXCR4 homology model had one more residue than the actual ECL2 of the crystal structure of CXCR4, etc.

b
RMSD of loop anchor residue positions in the lowest RMSD loop model from the corresponding residues in the crystal structure once superposed.
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