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Abstract
Computer-aided strategies are useful for reducing the costs and increasing the success-rate in drug discovery. Among these 
strategies, methods based on pharmacophores (an ensemble of electronic and steric features representing the target active 
site) are efficient to implement over large compound libraries. However, traditional pharmacophore-based methods require 
knowledge of active compounds or ligand–receptor structures, and only few ones account for target flexibility. Here, we 
developed a pharmacophore-based virtual screening protocol, Flexi-pharma, that overcomes these limitations. The protocol 
uses molecular dynamics (MD) simulations to explore receptor flexibility, and performs a pharmacophore-based virtual 
screening over a set of MD conformations without requiring prior knowledge about known ligands or ligand–receptor struc-
tures for building the pharmacophores. The results from the different receptor conformations are combined using a “voting” 
approach, where a vote is given to each molecule that matches at least one pharmacophore from each MD conformation. 
Contrarily to other approaches that reduce the pharmacophore ensemble to some representative models and score according 
to the matching models or molecule conformers, the Flexi-pharma approach takes directly into account the receptor flexibility 
by scoring in regards to the receptor conformations. We tested the method over twenty systems, finding an enrichment of 
the dataset for 19 of them. Flexi-pharma is computationally efficient allowing for the screening of thousands of compounds 
in minutes on a single CPU core. Moreover, the ranking of molecules by vote is a general strategy that can be applied with 
any pharmacophore-filtering program.
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Introduction

During the past two decades, the implementation of compu-
tational tools in drug discovery has increased. Many phar-
maceutical companies have included computational meth-
ods in their drug discovery pipelines [1, 2]. These methods 
have been useful to decrease the costs of drug discovery by 
reducing the number of compounds to test in experimental 
assays [3]. Their implementation in drug-screening protocols 
increases the rate of success of finding active compounds 
and reduces the false negatives from high-throughput com-
pound screening [1, 4–10].

Among the computational strategies for virtual screen-
ing the most popular are the quantitative structure-activity 
relationship (QSAR) [11, 12], docking [1, 8, 13, 14], and 
pharmacophore-based strategies [15–19]. QSAR defines a 
quantitative relationship (mathematical equation) between 
the electronic-structural characteristics and the activity from 
a set of known active compounds. The resultant relationship 
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is employed to identify new active compounds [11, 12]. 
However, the QSAR prediction will only work over com-
pounds that are physico-chemically similar to those in the 
training set [11]. Alternatively, molecular docking is widely 
used in virtual screening for predicting the conformations 
of ligand–receptor complexes and binding scores [1, 8, 20]. 
The search of the ligand–receptor conformations requires a 
significant amount of computational resources. Nonetheless, 
with multi-node computing clusters high-throughput dock-
ing simulations are commonly used.

Pharmacophore-based strategies require less compu-
tational resources than molecular docking, making them 
more suitable for exploring large compound libraries [15, 
16, 21]. These methods search for molecules that match an 
ensemble of electronic and steric features (pharmacophore) 
required to be a ligand of a specific biological target. There 
are two standard types of methods to define a pharmacoph-
ore (i) ligand based or (ii) structure based. The ligand-based 
methods use an alignment of known active compounds to 
identify common features for building the pharmacophore 
[22]. Similarly to QSAR, this strategy has the disadvantage 
of requiring known active compounds and the filtered mol-
ecules will cover only the pharmacophoric space associated 
with the initial training set. On the other hand, instead of 
requiring known active compounds, structure-based strate-
gies require protein structures to be available. Some strat-
egies use ligand–receptor structures to define pharmaco-
phores using the most relevant interactions present in the 
complexes [23–28].

Other methods introduce the flexibility of the recep-
tor using molecular dynamics (MD) simulations of the 
ligand–receptor complex [19, 28, 29] and define representa-
tive pharmacophores from the MD conformations. Wieder 
et al. [19] define the representative pharmacophores by 
grouping types and number of features but ignoring their 
spatial arrangement. They use a common hits approach 
(CHA), scoring the molecules according to the number of 
representative pharmacophores that match at least one mol-
ecule conformation (conformer). Whereas Polishchuck et al. 
[29] present a conformers coverage approach (CCA), scoring 
the molecules according to the number of its conformers that 
match any representative pharmacophore. However, we note 
that in these cases the pharmacophores are defined from the 
ligand–receptor interactions, and hence, the pharmacophoric 
space remains limited to the interactions observed in the 
complexes.

There are several ligand-free methods that define phar-
macophores from the receptor structure (without ligand). 
Mortier et al. designed a strategy to identify relevant interac-
tions in protein interfaces using crystallographic structures 
[15]. Another set of methods creates a consensus pharma-
cophore model from several conformations from MD simu-
lations of the ligand-free receptor [18, 30, 31]. However, 

the performance of these methods, in terms of the enrich-
ment of several benchmark systems, has not been evaluated. 
Considering all this information, most pharmacophore-based 
methods have some of these limitations: (i) they can produce 
biased results (due to the training sets or the ligand–receptor 
structures), (ii) some methods produce only a binary output: 
a list of compounds that match the pharmacophores, but 
without giving each molecule a score or rank, and, (iii) few 
methods include the flexibility of the receptor in the pharma-
cophore determination, leaving room for their improvement.

In this study, we developed a pharmacophore-based meth-
odology (Flexi-pharma) for virtual screening that overcomes 
the aforementioned limitations. Inspired by conformational-
prediction tools that take into account the receptor flexibility 
[32, 33], we use multiple conformations from MD simu-
lations. We develop a novel protocol to generate pharma-
cophores from the ligand-free receptor conformations, and 
screen compounds. A molecule is awarded a vote for each 
receptor conformation that has one or more pharmacophores 
that are matched by the molecule. In the end, the evaluation 
of the MD conformations results in a number of votes for 
each molecule that is used as a score. We first optimized 
the protocol using four systems, then we tested the meth-
odology over sixteen additional systems. We find that the 
Flexi-pharma list of votes can on average discriminate active 
compounds from decoys, resulting in an enrichment of the 
dataset.

Methods

Flexi‑pharma protocol

The Flexi-pharma protocol consists on the following steps: 
(1) run an MD simulation starting from a crystal structure; 
(2) select a set of MD conformations of the ligand-free 
receptor; (3) build a set of pharmacophores for each confor-
mation; (4) use Pharmer [34] to screen a compound library 
finding the molecules that match any pharmacophore; (5) 
give a ‘vote’ to the molecules that match at least one phar-
macophore for each conformation and (6) add the votes from 
the MD conformations. The total number of votes per mol-
ecule will be used as a score to rank the compounds from the 
library (i.e., the molecules with more votes are considered 
more active). A schematic summary of the protocol is shown 
in Fig. 1.

In the following, we will explain in detail the steps to 
generate the pharmacophore set and screen the compounds.

Pharmacophore screening

Affinity maps To generate the pharmacophore set, we start 
from a 3D conformation of the receptor (extracted from the 
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MD simulation). We use autogrid4 [35] to calculate affinity 
maps (a grid map which allows to identify the most favora-
ble positions of atom-types in the binding pocket) around 
the active-site. We use several atom-types: hydrogen bond 
(H-bond) donor, H-bond acceptor, hydrophobic, aromatic 
and charged atoms. Because autogrid4 does not calculate 
a unique H-bond acceptor affinity map, the features involv-
ing this atoms type are obtained by combining the affinity 
maps for O, S and N H-bond acceptors. Each affinity map 
is calculated over a box centered at a point inside the bind-
ing-site. The box centers (i.e., active space centers) for each 
benchmark system (see “Methods” section) are indicate in 
the Table  S1. The box size for the benchmark systems is 
12.5 × 12.5 × 12.5 Å using grid cells of 0.25 Å.

Receptor specificity We found that some affinity maps 
should be discarded from the pharmacophore determination 

when their grids show a flat landscape (i.e., the distribution 
of the affinity-energies is very broad). A flat affinity land-
scape indicates a low specificity of the active site towards 
the corresponding atom type. To estimate the flatness of the 
affinity-energy landscape, we calculate the histograms of the 
negative affinity-energy for each grid map using a bin size 
of 0.01 kcal/mol (units from autogrid4). Histograms with 
heavy tails, measured by the kurtosis, are associated to flat 
affinity-landscapes. The value of the kurtosis for discarding 
an affinity map depends on the atom type. H-bond accep-
tor, aromatic and hydrophobic affinity maps having histo-
grams with kurtosis higher than 3 are no longer considered 
in the pharmacophore determination. For the H-bond donor 
and charged atom types, a different kurtosis criterion was 
used. Our results indicate that the majority of affinity maps 
of H-bond donors show kurtosis larger than 3, a possible 
explanation for this could be because of the large number of 

Fig. 1  Schematic representation of the Flexi-pharma protocol for 
one test molecule. First, an MD simulation is performed. Then, a 
set of pharmacophores is determined for each MD conformation of 
the receptor. Then, Pharmer [34] is used to identify if the molecule 
matches any pharmacophore from each MD conformation; if so, 

a vote is given to the molecule. Finally, we sum the votes from the 
set of MD conformations. The green, blue, red and gray circles are 
hydrophobic, H-bond donor, H-bond acceptor and aromatic features, 
respectively
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cells with high affinity for the H-bond donor group. There-
fore, to discard the H-bond donors affinity maps a higher 
kurtosis of 4.5 was used.

For charged atom types, we used the affinity map to 
describe two interactions: ion-ion or ion-dipole. Therefore, 
each affinity map of a charged atom type is considered twice 
with different selection criteria. For the ion-dipole interac-
tion, we discarded affinity maps with kurtosis greater than 
23. For the ion-ion interaction, we discarded affinity maps 
with kurtosis greater than 50. We note that the pharmacoph-
ore features from the ion-ion interaction are defined differ-
ently than all the rest atom types (see below).

Hotspots from a grid‑percentage threshold After the recep-
tor specificity is taken into account by discarding the flat 
affinity grids, we define a grid-percentage threshold x% to 
determine the hotspots for each atom type. The percentage 
threshold used to determine the hotspots is an input param-
eter (x%). This parameter is a percent of total number of 
grid cells with negative affinity-energy. Therefore, the best 
x% cells with negative energy are selected. We named these 
selected grid cells: hotspots (e.g., Fig. 2a).

Feature determination After selecting x% of the cells using 
the grid-percentage threshold, we cluster the cells to gen-
erate the pharmacophoric features. A feature is defined by 
a center, a radius of gyration, an atom type and in some 
cases a direction. We cluster the grids from each hotspot by 
grouping all cells that are adjacent to each other in space and 
belong to the best x% of affinity-energy. For each cluster, 
the center of mass weighted by the affinity-energy and the 
radius of gyration are calculated (Fig. 2b). In addition, due 
to the chemical nature of the H-bonds, which relates certain 
atoms at a specific angle, for H-bond donors and H-bond 

acceptors, a direction-vector is calculated for each cluster. 
This vector is defined between the center of mass of the 
cluster and the closest atom-type counterpart belonging to 
the receptor.

The above feature-definition is done for all atom types 
apart for the description of the ion-ion interactions. For this 
case, an electrostatic feature was assigned over atoms CZ, 
NZ, CD and CG atoms of Arg, Lys, Glu, Asp, respectively, 
with a radius of gyration of 4.0 Å. Additionally, if the cent-
ers of mass of two features from different atom types are 
closer than 1 Å, then the two features are not allowed to 
coexist in the same pharmacophore.

The active space The affinity maps can involve regions 
outside the binding site (physically separated from the 
binding pocket or excessively exposed to the solvent). 
Therefore, taking all the features directly from the grid 
affinity maps could increase the probability of creating 
irrelevant features/pharmacophores. To overcome this 
issue, we define an active space using a sphere, and its 
center defines the grid-map center (i.e., the active space 
sphere’s center is the same as the grid-map center). All the 
features which are centered outside of the sphere are not 
considered for the pharmacophores definition (transparent 
pink circle in Fig. 2c). The active space radius depends on 
the size and shape of the binding pocket. A larger radius 
increases the probability of finding false positives in the 
virtual screening. Thus, we use a small radius of 5 Å for 
all systems. Furthermore, we use several active spaces to 
cover all the relevant regions of the active site and avoid 
regions beyond the binding site. Having several active 
spaces implies that the grid-map is calculated over differ-
ent regions of the binding site. For the benchmarks used 
in this study, three active spaces were enough to cover 

Fig. 2  Pharmacophore building. Pharmacophores are obtained from 
the binding-site hotspots. a Hotspots are identified by clustering the 
grids with highest x% percentage of affinity-energy from the affinity 
maps (enclosed in the box). e.g., for 5 atom types (H-bond acceptor 
(red), H-bond donors (blue), hydrophobic (green), aromatic (gray) 
and charge atoms (not shown for sake of simplicity)) are shown. b 
Then, the center of mass (energy-weighted) and the radius of gyra-
tion, for each hotspot, are calculated, and used to define the phar-

macophoric features (atom type, center of mass and the radius of 
gyration). c Finally, the set of pharmacophores is obtained from all 
possible combinations of 3 features which centers of mass are located 
inside of a predefined sphere (pink) of radius 5 Å (active space) that 
is centered at the grid-map center. In this study, three active spaces 
were used in each binding site. Therefore, the process (involving the 
steps A, B and C) was repeated for three sets of grid affinity maps 
with different centers
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each binding site. The center of each active space is pre-
sented in the Table S1. Therefore, the process showed in 
the Fig. 2 (steps from A to C) was carried out for three 
different active spaces. We clarify that we have defined 
the active space centers using previous knowledge of the 
system’s binding site, such as previous mutational analy-
sis of the binding site or ligand–receptor interactions from 
crystallographic structures.

Volume exclusion Molecules matching the pharmacoph-
oric features can present steric clashes with the recep-
tor. For this reason, in the pharmacophore determination, 
we have included a volume-exclusion criterion. For each 
backbone heavy atom and side chain center of mass from 
the receptor, we define a feature of volume exclusion with 
radius of gyration of 0.5 and 1.5 Å, respectively. The radii 
are small to allow for slightly larger ligand groups to fit 
inside the binding site. These volume-exclusion features 
are included in all pharmacophores used for the molecule 
screening.

Pharmacophores A pharmacophore is obtained by combin-
ing three features that are calculated from the different affin-
ity maps and active space, together with the volume exclu-
sion features. Therefore, we create a set of pharmacophores 
by generating all possible combinations of three features, 
resulting in multiple pharmacophores for each receptor con-
formation.

Molecule screening Once we have generated the set of 
pharmacophores for each receptor conformation, we use the 
Pharmer program [34] to search the compounds that match 
at least a pharmacophores of the set. Pharmer is a computa-
tional tool for the pharmacophore search inspired in object 
recognition methods from computer vision. The principal 
attribute of Pharmer is its efficiency, being able to screen 
databases of millions of molecules in a few seconds [34].

Ranking by vote of the receptor conformation

In the Flexi-pharma protocol, a molecule is awarded a vote 
for each receptor conformation that has one or more phar-
macophores that are matched by the molecule. Here, we con-
sider tautomers (or different protonation states) as the same 
molecule. The method has been inspired by consensus dock-
ing strategies that assign votes to the outcome from different 
docking programs [36]. All conformations are evaluated and 
a list of votes allows us to rank the molecules according to 
the number of times a molecule matches a pharmacophore 
from a different conformation. Details of the MD simula-
tions used to sample the conformational space of the recep-
tor are provided in the Methods.

Benchmark systems

We use two sets of benchmark systems: (i) a training set 
to study and optimize the protocol parameters and, (ii) a 
test set to evaluate the performance of Flexi-pharma. For 
each system, one or two crystal starting structures were used 
(see details below). In addition, a compound library was 
selected for each system with ligands (active compounds) 
and decoys (molecules with physicochemical similarity 
to the ligands but structurally different). We note that the 
libraries contain tautomers, or different protonation states, 
of the ligands or decoys. In this study, the tautomers of a 
molecule were considered as different conformations of the 
same molecule. Therefore, in our voting scheme, a molecule 
is assigned a vote when at least one tautomer (or protonation 
state) matches a pharmacophore from an MD conformation. 
Due to this consideration, the number of ligands and decoys 
reported below could be lower than those reported in the 
original molecule database.

Training set

The Flexi-pharma protocol was applied over four diverse 
benchmark systems: cyclin dependent kinase 2 (CDK2), 
estrogen receptor α (ER), cyclooxygenase-1 (COX) and gly-
cinamide ribonucleotide transformylase (GAR). The training 
systems were chosen in terms of the availability of complete 
3D structures of the receptors. By using the complete recep-
tor structure, we eliminate possible errors coming from the 
modeling of gaps present in the crystal structures. For each 
system, two crystal structures with conformational differ-
ences in the active site were chosen.

Cyclin dependent kinase 2 (CDK2) Two structures from pro-
tein data bank (PDB) were used, 1FVV [37] and 4KD1 [38]. 
For this system, the Directory of Useful Decoys (DUD) [39] 
was used. The ligand–decoy compound library contains 50 
unique ligands and 1779 decoys.

Estrogen receptor α (ER) The structures with PDB code 1XP9 
[40] and 3ERT [41] were selected. Because these structures 
are bound to antagonists, a ligand–decoy compound library 
for antagonists from NRLiSt BDB [42] was used. The data-
set contains 133 ligands and 6555 decoys.

Cyclooxygenase−1 (COX) Two structures with PDB code 
2OYU [43] and 3KK6 [44] were selected. A ligand–decoy 
compound library from the database of useful decoys: 
Enhanced (DUD-E) [45] was used. The dataset contains 115 
ligands and 7118 decoys.

Glycinamide ribonucleotide transformylase (GAR) The 1NJS 
[46] and 1RC0 structures from the PDB were selected. The 
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dataset was taken from DUD-E [45]. The compound library 
contains 50 ligands and 2694 decoys.

Test set

To evaluate the performance of the Flexi-Pharma protocol, 
we applied the method over 16 additional systems (for a total 
of 20 systems, including the training set). The test systems 
are shown in Table 1 together with the PDB structure, and 
number of ligand/decoys in the dataset. Structures of the 
targets NRAM, HSP90a, HXK4, FA7, KITH, FABP4 and 
PA2GA were prepared as in ref. [47]. For the remaining 
systems, the targets were downloaded from the PDB and 
missing atoms were added with the PyMOL mutagenesis 
tool [48]. The protocol for the protonation of these targets is 
described in the “Molecular dynamics” section. The active 
space centers for each system are shown in Table S1. For all 
the systems in the test set, ligand–decoy compound librar-
ies were taken from DUD-E [45] (see columns 3 and 4 in 
Table 1). The protonation state of all molecules was kept as 
in the original dataset. Ligands in DUD-E libraries cover a 
wide range of binding affinities ( K

i
 from 0.12 pM to 4.9 mM 

and IC50 from 0.55 pM to 997 nM [45]), which allows for 
the protocol to be tested on both strong and weak binders.

Molecular dynamics

The starting structures for the molecular dynamics simula-
tions were the PDB receptor-ligand complexes (described 
above). The inclusion of the crystallographic ligand was 
done to avoid an over-compactness of the active site. The 
PROPKA [49] module of PDB2PQR software package 
[50, 51] was used to determine the protonation state of 

the ionizable side chains at pH 7.0. The complexes were 
protonated using the GROMACS tools [52, 53]. The final 
model was solvated with a water box ensuring that all pro-
tein–ligand atoms are at least 10 Å separated from the edges 
of the box, using the transferable intermolecular 3 point 
water model (TIP3P) [54]. The solvated systems were neu-
tralized using  Cl− and  Na+ ions. The AMBER99SB-ILDN 
force field [55] was used to model the protein. Antecham-
ber, from AMBER tools, was used to calculate the General 
Amber Force Field (GAFF) [56] parameters for the ligands. 
All the systems were minimized until the maximum force 
was less than 1000 kJ/mol.nm using the steep descent 
algorithm.

MD simulations were carried out using periodic boundary 
conditions. A spherical cutoff of 1.2 nm for the non-bonded 
interactions was applied together with a switch function 
acting between 1.0 and 1.2 nm. The non-bonded list was 
updated every 20 steps. The particle mesh Ewalds method 
was used to compute long-range electrostatic term and the 
leapfrog algorithm was used to propagate the equations of 
motion. All bond angles involving hydrogen atoms were con-
strained using the LINCS algorithms [57]. The equilibration, 
of the solvated protein–ligand system, was carried out in two 
steps. The first step consisted of 100 ps of the NVT (constant 
number of particles, volume and temperature) simulation at 
300.15 K, in which the protein and ligand heavy atoms were 
restrained, using a force constant of 1000 kJ/mol.nm. The 
second step consisted of 100 ps of NPT (constant number of 
particles, pressure and temperature) simulation at 300.15 K, 
in which the protein and ligand heavy atoms were restrained, 
using a force constant of 1000 kJ/mol.nm. MD productions 
were then carried out without restrains. The time step was 
set to 2 fs.

Table 1  Ligand/decoy datasets 
for targets in the test set

Target name PDB ID Ligands Decoys

Neuraminidase (NRAM) 1B9V 98 6199
Heat Shock Protein 90-alpha (HSP90a) 1UYG 88 4848
Hexokinase Type IV (HXK4) 3F9M 92 4696
Coagulation Factor VII (FA7) 1W7X 114 6245
Thymidine kinase (KITH) 2B8T 57 2850
Fatty Acid Binding Protein Adipocyte (FABP4 ) 2NNQ 47 2749
Phospholipase A2 (PA2GA) 1KVO 99 5146
Beta-lactamase (AMPC) 1L2S 48 2832
FK506-binding protein 1A (FKB1A) 1J4H 111 5800
Leukocyte adhesion glycoprotein LFA-1 alpha (ITAL) 2ICA 138 8487
Tyrosine-protein kinase LCK (LCK) 2OF2 420 27374
Trypsin I (TRY) 2AYW 449 25914
Poly [ADP-ribose] polymerase-1 (PARP1) 3L3M 508 3035
Human Immunodeficiency Virus type 1 Protease (HIV) 1XL2 536 35688
Acetylcholinesterase (ACE) 1E66 453 26233
Stem cell growth factor receptor (KIT) 3G0E 166 10447
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To assess the Flexi-pharma method, we used 100, 50, 20 
or 5 frames obtained by periodic selection from MD simula-
tions using 10, 5 or 1 ns. The ligand was removed from the 
MD frames to obtain the ligand-free receptor conformations, 
which were used to build the pharmacophores (as described 
above).

Alternative pharmacophore‑based programs

Pharmit

We used Pharmit [58] to generate pharmacophoric features 
from the two crystallographic structures used for each train-
ing system. From the set of features (generated by default), 
all combinations of 4 features were used to generate a set 
of pharmacophores. We performed a virtual screening with 
the list pharmacophores using the Pharmer program [34], 
obtaining a list of potential ligands.

Pharmagist

Pharmagist is a ligand-based program that requires known 
ligands as templates. We used the default input param-
eters. For the sake of comparison, given that Flexi-pharma 
does not use training ligands to build the pharmacophores, 
we implemented pharmagist using just three ligands. We 
defined two ligand-training sets. For the first set (set 1), 
we randomly selected three ligands that were not included 
in the compound library (Table S2). For the second set of 
template-ligands (set 2), we used the two ligands from the 
two crystallographic structures for each training system, 
and a ligand chosen randomly from the compound library. 
For set 2, the third ligand was chosen randomly five times 
(Table S3). The ligand with less rotatable bonds was use as 
a pivot, which is the reference to generate all the pharma-
cophores. The Pharmagist score was use to calculated the 
EPs and the EFs.

Metric validation

To assess the performance of the protocol, two metrics were 
used: the Enrichment Factor (EF) and the Enrichment Plot 
(EP).

The EFx% is the ratio between ligands (Hits) found in a 
certain threshold (x%) of the best ranked compounds and the 
number of compounds at that threshold (Nx%) normalized 
by the ratio between the hits contained in the entire dataset 
(Hits100%) and the total number of compounds N100%.

EF
x
=

Hits
x%

Nx%
×

N
100%

Hits100%

Values of EFx% higher than 1, indicate an enrichment of the 
compound library.

The EPs assess the performance of a filtering method 
at different levels of the sorted compound library. The EP 
is a plot of the percentage of ligands found against the 
percentage of molecules screened [59].

To assess the error of the EPs obtained with Flexi-
pharma a bootstrapping analysis with replacement was 
used. For each MD trajectory the selected frames were 
iteratively re-sampled with replacement 100 times. Thus 
100 EPs were obtained for each trajectory. From these the 
average and the standard deviation of the EPs were calcu-
lated. We note that the bootstrapping technique measures 
the uncertainty of the results due to the sample size. How-
ever, other sources of error (e.g. the grid-energy definition 
and threshold, number of features, etc.) are not included 
in this estimate.

Results and discussion

We present a protocol for virtual screening based on phar-
macophores, Flexi-pharma, which uses multiple free 
ligand–receptor conformations. A possible advantage of 
our protocol, over structure-based and ligand-based pharma-
cophore protocols, is that it does not require ligand–recep-
tor complexes or known active compounds. Therefore, the 
explored pharmacophoric space is not biased by the chemi-
cal nature of the known ligands. Additionally, this protocol 
includes the flexibility of the receptor, which improves the 
results from virtual screening, as we will show in this .

Protocol training and optimization

The Flexi-pharma protocol was applied over four benchmark 
systems used as training set, the cyclin dependent kinase 2 
(CDK2), estrogen receptor α (ER), cyclooxygenase-1 (COX) 
and Glycinamide ribonucleotide transformylase (GAR) (see 
“Methods” section). The training set was used for studying 
the behavior of several protocol parameters (e.g. starting 
structure, grid-energy threshold, number of MD frames, etc.) 
and for selecting their optimal value.

To assess the dependence of the protocol on the starting 
structure, two crystal structures with conformational differ-
ences in the active site were chosen for each benchmark 
system of the training set. A compound library was selected 
for each system. The library consisted of a set of ligands 
(i.e., active compounds) and decoys (i.e., non-active com-
pounds). We used two metrics to assess the performance of 
the Flexi-pharma protocol: the Enrichment Factor (EF) and 
the Enrichment Plot (EP) (see “Methods” section). These 
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metrics measure the enrichment of a compound library after 
virtual screening. Finally, we compare the performance of 
our protocol to other state-of-the-art pharmacophore-filter-
ing methods.

Flexi‑pharma improves outcome in comparison to a single 
crystal structure

The application of Flexi-pharma, using multiple recep-
tor conformations from MD, has several advantages over 
the use of a single crystallographic structure. In Fig. 3, 
we compare the EPs from the Flexi-pharma protocol for 
the benchmark systems to the results for only the crystal 
structures. In an EP the rank of each molecule is used to 
calculate the percentage of true ligands found as a function 
of the % of top sorted compounds. We note that the use of 
a single conformation (e.g., the crystal structure) has the 
limitation of not supplying a score for the compounds but 
rather a binary list of possible active compounds, which 
corresponds to a single point on the EP (Fig. 3). This 
is a disadvantage because there is no control over what 

percentage of the library is filtered / selected in the binary 
list. For example, the list of potential ligands, could be 
too large for testing experimentally (e.g., EP for GAR in 
Fig. 3 (blue and orange points) and EFs in Tables S4-S7). 
In contrast, the use of the Flexi-pharma voting strategy 
results in a ranking of the molecules, which allows us to 
select any fraction of the best ranked compounds (e.g., 5% 
of the compound library) for further screening.

Figure 3, shows that the Flexi-pharma protocol pro-
duces better or equal EPs (or EFs) in comparison to using 
a single crystallographic structure. It is also worth noting 
that overall the EFs obtained in the range 5–10% of the 
best ranked compounds are larger than 1, resulting in an 
enrichment of the database. These results show that the 
use of Flexi-pharma, with multiple receptor conforma-
tions, is suitable for virtual screening of large compound 
libraries. We highlight that this protocol is not limited to 
the conformations from MD but can be used with different 
free ligand–receptor structures from X-ray crystallogra-
phy, NMR experiments or conformations generated from 
homology modelling or other simulation techniques.

0

20

40

60

80

100

CDK2

4KD1
1FVV

Flexi-pharma
random

ER

1XP9
3ERT

Flexi-pharma

0

20

40

60

80

100

1 5 10 80

COX

2OYU
3KK6

Flexi-pharma

1 5 10 80

% of sorted database

GAR

1NJS
1RC0

Flexi-pharma

%
 o

f k
no

w
n 

lig
an

ds
 fo

un
d

Fig. 3  Average enrichment plot obtained after applying Flexi-pharma 
over four benchmark systems (black curves). For each benchmark 
system, two starting structures (4KD1 and 1FVV for CDK2; 1XP9 
and 3ERT for ER; 2OYU and 3KK6 for COX and 1NJS and 1RC0 
for GAR) were used. The MD simulations were 10 ns long, and for 
each starting conformation they were triplicated by assigning random 
initial velocities (i.e., 6 MD trajectories for each system). From each 
trajectory 100 equidistant frames were selected, and the Flexi-pharma 

protocol was applied. The list of votes is used to calculate the EPs. 
Bootstrapping analysis was performed by sampling with replacement 
100 times to obtain the average EP and standard deviation. The Flexi-
pharma protocol was applied using a grid-percentage threshold value 
of 0.7%. The point corresponds to the % of molecules filtered versus 
the % of ligands found by applying the protocol only using the crys-
tallographic structure. We note that there are two crystal structures 
for each system. The x-axis is in logarithmic scale
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The EPs showed in Fig. 3 involved several parameters, 
such as the grid-percentage threshold value, the MD start-
ing structure, the length and number of frames. In the fol-
lowing, we study the influence of these parameters over 
the results.

Grid‑percentage threshold independence

The protocol proposed in this work involves several param-
eters for defining the set of pharmacophores, among these 
is the grid-percentage threshold (see the “Methods”). It is 
used to define the hotspots for the pharmacophoric features 
in the binding site. In Fig. 4, we show the average EPs for 
the each system for grid-percentage thresholds of 0.3, 0.5, 
and 0.7%. We find that the Flexi-pharma results are almost 
independent for a wide range of grid thresholds. In other 
words, the EPs calculated at different threshold values do 
not show statistical differences between each other. How-
ever, we note that for a single structure, the number of fil-
tered compounds depends on the threshold value (e.g., see 
Supplementary Tables S4-S7 for the crystal structures). A 
large threshold implies a large number of features, which 

increases the pharmacophore set and the computational time 
to carry out the virtual screening. Therefore, a good compu-
tational efficiency is obtained with small threshold values, 
while maintaining the performance. Henceforth, the results 
are shown for the threshold value of 0.7%. However, smaller 
values can also be used.

Outcome for different MD setups

We study how the outcome of Flexi-pharma depends on 
the starting MD structure, number of replicas, number of 
MD frames and MD simulation length. We used two start-
ing structures for each training system and ran three MD 
replicas for each starting structure. In Fig. 5, we show the 
EPs for each replica and each starting structure is labeled 
with a different color (blue or purple). We find that in almost 
all cases the results are within statistical error. However, 
for GAR there seem to be differences between the starting 
structures, with 1RC0 being slightly better. To investigate 
this further, we ran two additional simulations starting from 
each crystal. In Fig. S1, we compare these results (dashed 
lines) to the ones shown in Fig. 5 (solid lines) for GAR. 
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Fig. 4  Average enrichment plots obtained after applying the Flexi-
pharma protocol over the benchmark systems using different grid-
percentage threshold values: 0.3, 0.5 and 0.7%. For each benchmark 
system, two starting structures (4KD1 and 1FVV for CDK2; 1XP9 
and 3ERT for ER; 2OYU and 3KK6 for COX and 1NJS and 1RC0 
for GAR) were used. The MD simulations were 10 ns long, and for 
each starting conformation they were triplicated by assigning random 
initial velocities (i.e., 6 MD trajectories for each system). From each 

trajectory 100 equidistant frames were selected, and the Flexi-pharma 
protocol was applied. The list of votes is used to calculate the EPs. 
Bootstrapping analysis was performed by sampling with replacement 
100 times to obtain the average EP and standard deviation. See the 
Methods for details about the statistical analysis. The standard devia-
tion (std) of the average enrichment (obtained by bootstrapping analy-
sis) is shown in the inset of each plot. The x-axis is in logarithmic 
scale
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Interestingly, for the additional simulations, starting crys-
tal 1NJS has the highest enrichment. These results indicate 
that the starting structure does not significantly change the 
outcome but several replicas should be performed to have 
a good convergence. It is worth highlighting the important 

role of the MD search, which helps decrease the possible 
dependence of the EPs on the starting structure. In contrast, 
there is a large dependence observed in the EFs obtained for 
the crystallographic structures (Tables S4-S7, first row of 
Table 2 or from docking studies [13, 60, 61]).

Fig. 5  Enrichment plots after 
applying Flexi-pharma over 6 
MD trajectories starting from 
two crystal structures for each 
system (4KD1 and 1FVV for 
CDK2; 1XP9 and 3ERT for 
ER; 2OYU and 3KK6 for COX; 
1NJS and 1RC0 for GAR). Each 
simulation was 10 ns long, and 
100 equidistant frames were 
selected to apply the Flexi-
pharma protocol. Bootstrap-
ping was use to calculate the 
average EPs for each trajectory. 
The Flexi-pharma protocol was 
applied using a grid-percentage 
threshold value of 0.7%. The 
standard deviation (std) of the 
average enrichment (obtained 
by bootstrapping analysis) is 
shown in the inset of each plot. 
The x-axis is in logarithmic 
scale
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Fig. 6  Average enrichment 
plot obtained after applying 
the Flexi-pharma over the 
benchmark systems, using a 
different number of frames from 
the MD trajectories. 100, 50, 
20 or 5 equidistant frames were 
selected. Bootstrapping analysis 
was used to calculate the aver-
age EPs for each number of 
selected conformations. Each 
trajectory was 10ns long and the 
grid-percentage threshold was 
0.7%. The x-axis is in logarith-
mic scale
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We assess the performance of the Flexi-pharma protocol 
depending on the number of frames selected from the MD 
trajectory. In Fig. 6, we show the average EPs for each sys-
tem and different number of frames at a fixed MD length 
of 10ns. We find that the larger the number of frames, the 
slightly better the enrichment obtained. 100 frames (green 
line Fig. 6) ensures good EPs, however, using 50 frames 
(purple line Fig. 6) supplies us with similar results at lower 
computational resources. In contrast, a small number of 
frames (e.g., 5) results in worse EPs, and a larger error 
(given that there is a higher probability to obtain the same 
number of votes among molecules). Thus, a sufficiently large 
number of conformations is necessary to obtain a good sam-
pling of the binding site and to provide statistical robustness.

A reason for using MD in the Flexi-pharma protocol is 
that, if significant sampling of the binding site is performed, 
then the pharmacophores obtained should cover sufficiently 
well the pharmacophoric space. To assess the performance 
of Flexi-pharma with the MD length, we calculated the EPs 
using 100 equidistant frames coming from MD trajectories 
of 1, 5 and 10 ns. The results are shown in Fig. 7. We found 
that 10 or 5 ns give similar results. Thus, relatively short MD 
simulations supply enough conformational sampling of the 
binding site, decreasing the computational cost of the pro-
tocol. However, in some cases too short simulations (CDK2 
and ER for 1 ns) are insufficient.

Overall, our results indicate that Flexi-pharma does 
not have large dependencies on the MD trajectory starting 
conformation, length or number of selected frames. For 

example, good enrichment for all the systems in the train-
ing set are obtained at the top 5% of the compound library 
(see Fig. 3 and Table 2 top-row).

Comparison to other pharmacophore‑based methods

In this section, we performed a preliminary comparison of 
the Flexi-pharma performance to that of a structure-based 
pharmacophore method: Pharmit [58], and of a ligand-
based pharmacophore method: Pharmagist [62, 63] using 
the training set systems. Pharmit [58] generates pharmaco-
phoric features, from ligand–receptor structures, based on 
the interactions present in the complexes. We used the two 
crystal structures for each system as the reference to create 
the pharmacophores from Pharmit (see “Methods” section 

Fig. 7  Average enrichment plot 
obtained after applying Flexi-
pharma over the four benchmark 
systems using MD simulations 
of different length: 10, 5 and 1 
ns. For each individual MD tra-
jectory, 100 equidistant frames 
were selected. Bootstrapping 
was used to calculate aver-
age EPs for 6 replicas starting 
from two crystal structures of 
each system. The Flexi-pharma 
protocol was applied using a 
grid-percentage threshold value 
of 0.7%. The x-axis is in loga-
rithmic scale
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Table 2  EF5% obtained with Flexi-pharma and Pharmagist for the 
benchmark systems in the training set. To obtain the EFs with Flexi-
pharma, 6 MD trajectories of 10ns (starting from two crystal struc-
tures), 100 frames per trajectory, and a grid-percentage threshold of 
0.7% were used. For Pharmagist [62, 63] we used two sets of training 
ligands. The first set uses three ligands that are not included in the 
compound library as templates. The second uses ligands that are con-
tained in the compound libraries (see “Methods” section)

CDK2 ER COX GAR 

Flexi-pharma 3.1 2.9 2.3 2.6
Pharmagist set 1 1.6 0.2 1.4 1.2
Pharmagist set 2 2.6 3.4 3.0 19.3
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for details). In Fig. S2, we compare the results from Flexi-
pharma to the individual EFs obtained from each crystal 
structure. We find that our protocol in most cases has higher 
EFs than Pharmit. Similarly as with single conformations, 
Pharmit has the limitation of generating a binary output for 
each ligand–receptor complex, impeding the ranking of mol-
ecules and the selection of different filtering ranges.

Pharmagist [62, 63] is a ligand-based method that cre-
ates consensus pharmacophores from the alignment of 
know ligands. To carry out a virtual screening with this 
program, we used two sets of ligands. The first set consists 
of three known ligands that are not included in the com-
pound library (see “Methods” section). For the second phar-
magist training set, we use the two ligands from the two 
crystallographic structures, and a ligand chosen randomly 
from the compound library of each system. We note that the 
second set contains training ligands very similar to those 
from the compound libraries. From the Pharmagist score, 
we can calculate the EP and EFs. In Table 2, we compare 
the EF5% of Pharmagist to the Flexi-pharma outcome for 
the two sets of training ligands. Also, in Fig. 8, we show the 
corresponding EPs. An important result that we find is that 
the Pharmagist outcome is highly dependent on the train-
ing set. For the first training-ligand set (those that are not 
extracted from the compound library; green line in Fig. 8), 
the Pharmagist results are worse than those obtained with 
Flexi-pharma in the range 1-40% of the screened dataset. 
However, for the second set, the Pharmagist results improve 
significantly. Thus, the results obtained with Pharmagist 

have large dependence on the ligand templates. On the other 
hand, Flexi-Pharma does not present this bias, indicating 
that Flexi-pharma is not limited by the knowledge of ligands 
or ligand–receptor structures.

Flexi‑pharma over the test set results in good 
enrichment

We tested the Flexi-pharma protocol over sixteen addi-
tional systems (test set described in the Methods). We 
used one starting crystal structure, the 0.7%, 0.5% and 
0.3% grid-energy thresholds, three replicas of 10ns MD 
simulations, and 100 equidistant MD frames per replica. 
The EFs at 5 and 10 % are shown in Table 3 for the 0.7% 
grid-energy threshold together with the EFs from the 
training set (last four rows). Interestingly, we find that 19 
out of the 20 systems show an enrichment of the dataset, 
with average EFs of 2.8 and 2.3 at 5 and 10 %, respec-
tively. In Figs. S3 and S4, the EPs for the test systems 
are presented. Remarkably, some of the test systems per-
form better than those from the training set. These results 
demonstrate that the Flexi-pharma protocol allows us to 
discriminate ligands from inactive compounds for a variety 
of systems. We note that the PA2GA system does not pre-
sent an enrichment of the dataset. A possible explanation 
for its failure is that there is a calcium ion in the binding 
site making direct contact with the ligand. Heavy atoms 
are not commonly used for the parameterization of the 
grid energies, which could lead to incorrect features for 

Fig. 8  Comparison between EPs 
obtained with Flexi-pharma and 
Pharmagist [62, 63]. The aver-
age enrichment plot obtained 
after the application of the 
Flexi-pharma to four benchmark 
systems (using 10ns, 100 frames 
of MD and threshold=0.7%) 
is showed as a black line. The 
green line is the EP obtained 
with Pharmagist using as tem-
plates three ligands which were 
not included in the compound 
library (set 1). The orange line 
corresponds to the EP obtained 
with Pharmagist (set 2), when 
the pharmacophores were 
generated using the two ligands 
from the two crystallographic 
structures (for each system) and 
one ligand chosen randomly 
from the compound library. 
The third ligand was chosen 
randomly 5 times to obtain an 
average EP for Pharmagist set 2
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the pharmacophores. Moreover, for certain force-fields, 
heavy atoms can destabilize the conformations in the MD 
simulations. Therefore, the Flexi-pharma protocol might 
not work well for receptors with heavy atoms in their bind-
ing site.

Computational performance

An advantage of the Flexi-pharma protocol over more 
sophisticated methods like docking is its capacity to screen 
large compound libraries in a relatively short time. For 
example, its implementation takes 2.5 minutes per confor-
mation/MD-frame in an single core (processor: Intel Xeon 
Bronze 3104 CPU @ 1.70GHz) for screening 7987 mol-
ecules using the 3ERT structure with a grid-percentage 
threshold of 0.7% and three active spaces. In contrast, dock-
ing of the same library over the same target structure using 
the vina software [64], rdock [65] or autodock [35], takes 
approximately 11980, 39935, 143766 minutes, respectively, 
over a single core using the same processor as before (also 
see ref. [13]). Because Flexi-pharma is faster but less accu-
rate than the docking-based strategies, the protocol is suit-
able to use in the first steps of a virtual screening, previous 
to a docking strategy. However, if one wants to use multiple 
conformations from MD, one should also take into account 
the MD simulation time. For the tested systems, to run 10 ns, 
the average time was 2.8 hours on two of the same proces-
sors and with a GPU NVIDIA Tesla P4 8GB Passive.

Conclusions

We have developed a protocol, Flexi-pharma, that is able 
to distinguish between active and inactive compounds 
towards a specific protein receptor, enriching the outcome 
for 19 out of 20 benchmark systems. Flexi-pharma obtains 
pharmacophores without the requirement for known active 
compounds. It is very appropriate for virtual screening 
over new protein targets, whose binding sites have not 
been widely characterized, such as allosteric sites.

Flexi-pharma incorporates the flexibility of the binding 
site in the virtual screening using multiple receptor con-
formations, which can be obtained from MD simulations. 
Nevertheless, the flexibility can be introduced using struc-
tures from experimental methods (e.g., X-Ray crystallog-
raphy or NMR) or from homology modelling. The rank-
ing-by-vote strategy allows one to obtain a score for each 
molecule of the compound library. This is an advantage for 
selecting any range of the library for further analysis. In 
addition, the inclusion of flexibility in the pharmacophore-
based virtual screening significantly improves the results 
compared to the use of a single receptor structure.

The protocol has a good performance based on twenty 
systems. Moreover, it has a robust performance over a 
wide parameter range, such as the grid-percentage thresh-
old or MD setup. For example, good EF5% are obtained 
using short 5ns MD simulations with 50 frames, which 
allow for high computational efficiency. The results indi-
cate that the protocol is suitable to implement over large 
compound libraries as a first-screening tool, given its 
demand of few computational resources.

In comparison to pharmacophore-based scoring strate-
gies that use MD simulations [19, 29], the Flexi-pharma 
method has several differences. First, it avoids generat-
ing representative pharmacophores. By clustering the 
pharmacophores and reducing them to a small set of rep-
resentative models some underlying information of the 
receptor’s dynamics could be lost. Second, Flexi-pharma 
takes directly into account the conformational ensemble 
(instead of the pharmacophore ensemble) by assigning a 
vote per conformation (not per pharmacophore). Third, 
Flexi-pharma does not build the pharmacophores using 
knowledge of active ligands, which allows for a broad 
exploration of the chemical space. However, we note 
that a thorough and extensive comparison to multiple 
state-of-the-art pharmacophore-based methods might be 
required to determine which strategy performs best. This 
large-scale assessment exceeds the scope of this paper that 
is to present the Flexi-pharma method and its potential 
applicability.
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